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Abstract 

 This effort exploits the unique physical and electrical characteristics of carbon 

nanotubes (CNTs) for field emission applications.  Carbon nanotube field emission 

devices are designed, fabricated, and tested.  Two reliable CNT synthesis methods, 

microwave plasma enhanced chemical vapor deposition (MPE-CVD) and thermal 

chemical vapor deposition (T-CVD), are developed.  The physical properties of the 

resulting CNTs are analyzed using Raman spectroscopy and Scanning electron 

microscopy (SEM) and then tested for field emission performance.  The T-CVD grown 

CNTs are shown to have fewer growth defects, but suffer from less process control 

making integration into devices difficult without further process development.  Field 

emission testing shows the T-CVD CNTs to be much better emitters, exceeding 

13 mA/cm2 at an electric field of only 1.4 V/µm, while the best MPE-CVD CNTs only 

managed ~1 mA/cm2 at the much higher electric field of 4.56 V/µm. 

 Two methods of device fabrication, conventional photolithography and nanosphere 

lithography, are developed and used to fabricate gated field emission arrays.  Finite 

element analysis is used to optimize the gated array design to maximize the electric field 

strength.  All fabrication steps are successfully demonstrated and prototype devices tested 

and compared to simple CNT carpet samples showing marked improvements by reducing 

electrostatic screening effects. 
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Carbon Nanotube Field Emission Arrays 
 
 
 

I. Introduction 

 

 Carbon nanotubes (CNTs) represent a relatively new material that has spawned an 

entire industry.  Research into the properties and potential applications for CNTs began in 

1991 when Iijima published an article identifying multi-walled carbon nanotubes 

(MWCNTs) [1].  In the ensuing years the characterization of unique and phenomenal 

mechanical, electrical, thermal, and chemical properties of CNTs has opened up vast 

potential applications in virtually every field of science and technology.  This research 

effort is focused on just one of these applications--field emission. 

 CNTs have many characteristics ideal for field emission such as narrow diameters, 

high aspect ratios, high temperature stability, good conductivity, and structural strength.  

Developing high current density field emission arrays has been researched since the 

1960s when Spindt first proposed micromachined sharp tipped structures for field 

emission [2].  Figure 1 shows scanning electron microscope images of a Spindt tip and 

the corresponding cathode array.  Spindt cathodes have a number of limitations.  The 

metal tips require much stronger fields for emission than CNTs, 100 V/µm vs 1-10 V/µm 

[3].  Spindt tips tend to form oxides which increase the work function and cause a 

decrease in emission current.  The metal tips will sputter when bombarded with ionized 

particles.  Sputtering will blunt the tip resulting in less field concentration and 

consequently reduce or stop emission [4].  The potential of CNTs to negate these 
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limitations and further improve field emission array performance provides continued 

motivation for CNT field emission research. 

 
Figure 1.  SEM images of a Spindt Cathode (a) a single tip 
and (b) the cathode array [5]. 

 
 Carbon nanotube field emission arrays could have a number of applications.  Of 

these applications these three receive the most research attention: flat panel displays, 

vacuum electronics and cold cathodes for charge neutralization for field emission electric 

propulsion (FEEP) on spacecraft.  CNT-based field emission cathodes are commercially 

available.  Busek Co. in Natick, MA offers half-inch cathodes, shown in Figure 2 (a), 

capable of 1.0 mA for over 6000 hours.  The cathodes were to be deployed on the JPL, 

Space Technology 7/Disturbance Reduction System mission as part of the satellite FEEP 

system until funding was cut [6].  CNT-based field emission displays (FEDs) have 

received a lot of attention as a candidate for the next generation of flat panel displays.  

Many of the important performance metrics favor emission based displays such as wider 

field of view, brightness, and better color and contrast.  In 1999, Samsung demonstrated 

1 µm 

10 µm 
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the small 4.5 inch CNT-based FED in Figure 2 (b) and has since developed a 38 inch 

color display [7]. 

 
                                (a)                                     (b) 
Figure 2. a) Busek Co. CNT-based Commercial Cathode [6] 
b) Samsung CNT-based field emission display [7]. 

 
1.1. Research Goals 

 The goal of this research effort was to develop state-of-the-art carbon nanotube 

fabrication and testing capabilities at AFIT with a focus on field emission applications.  

Research began with carbon nanotube synthesis.  Two methods of fabrication were 

developed through detailed growth studies that highlighted new and important 

relationships between CNTs and different substrate and catalyst materials.  Conventional 

and novel lithography methods were developed and employed to fabricate field emission 

devices.  Finite element analysis was used to optimize the field emission device design.  

Testing included developing the ability to perform detailed analysis on the quality of the 

CNTs grown and test field emission device performance and determined relationships 

between CNT synthesis, quality, and performance. 

1.2.  Dissertation Organization 

 This dissertation is organized into seven chapters.  Chapter II contains background 

information on the structure, physical and electrical properties, and synthesis methods of 
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carbon nanotubes.  Current research into field emission devices and various methods of 

patterning and controlling CNT growth are also summarized.  The development of multi-

walled carbon nanotube synthesis via microwave plasma enhanced chemical vapor 

deposition and thermal chemical vapor deposition methods, along with the 

characterization of the resulting carbon nanotubes is explained in Chapters III and IV.  

Chapter V shows how a field emission array device design was optimized through a 

parametric study using finite element analysis.  Efforts to fabricate and test field emission 

array devices, including the optimized design from Chapter V, are reported in Chapter 

VI.  Finally, Chapter VII summarizes this research effort with conclusions and 

recommendations for future research. 
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II. Background 

 

 The first evidence of carbon nanotubes comes from transmission electron 

microscope (TEM) micrographs published by Radushkevich in 1952 in the Russian 

Journal of Physical Chemistry [8].  Armed with the knowledge of carbon nanotubes 

available today the micrographs, one of which is shown in Figure 3 with a scanning 

electron microscope (SEM) picture of recently grown CNTs, clearly show MWCNTs, 

however, without the capability to reliably produce, characterize, or use these carbon 

nanotubes little was done besides document their existence until 1991.  Iijima effectively 

rediscovered or introduced carbon nanotubes to the scientific community as a by-product 

of an electric arc discharge method of synthesizing C60 fullerenes [1].   

 Iijima’s discovery was coupled with a method of reliably reproducing the 

MWCNTs which led to an explosion of research in the area of carbon nanotubes.  Iijima 

made another significant contribution with the discovery of single-walled carbon 

nanotubes (SWCNTs) in 1993 [9].  Researchers have scrambled ever since to refine 

 
                                  (a)                                                                   (b) 
Figure 3.  a) Radushkevich 1952 TEM micrographs of carbon nanotubes [8].  b) 
SEM image of representative CNTs grown at AFIT. 

 

1 µm 
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synthesis methods, define the growth processes, characterize the physical properties, and 

determine applications for both MWCNTs and SWCNTs.  The results have been 

astounding and immense with an average of five CNT papers published a day and a 

billion dollar global industry growing up around the vast research efforts and few 

marketable applications [10].   

 The element carbon is a very common and by far the most versatile element 

forming a myriad of organic compounds [11].  Carbon has 6 electrons, two of which fill 

the innermost shell or 1s orbital.  The other four valence electrons can fill the sp, sp2, and 

sp3 hybrid orbitals, depending on the solid allotrope formed [2].  Solid carbon can form 

three allotropes, shown in Figure 4 [12].  Diamond is the crystalline form of carbon 

resulting from the tetrahedral bonding of each carbon atom with four equidistant 

neighboring atoms.  In this tetrahedral bonding configuration each of the valence 

electrons occupies the sp3 hybrid orbital forming σ covalent bonds [2].  Graphite consists 

of hexagonal bonded sheets of carbon with three valence electrons occupying the planar 

sp2 hybrid orbital.  This forms three very strong in-plane σ bonds with the remaining 

 
Figure 4.  Three Allotropes of Carbon [12]. 
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electron forming a weak out-of-plane π bond.  Both diamond and graphite are common in 

nature and their respective properties have been studied extensively.   

 The third carbon allotrope, buckminsterfullerenes or fullerenes, was discovered in 

spherical form in 1985 by Rick Smalley et al [12].  The spherical fullerene or C60 

fullerene consists of 60 carbon atoms bonded together in hexagons and pentagons 

forming a sphere like a soccer ball.  Fullerenes of all sizes are single molecules, which is 

uniquely different from the other solid phase allotropes which are single element 

materials [12].  Besides the symmetrical C60, the following fullerenes have been 

identified and characterized C70, C76, C78, and C84 [11].  Although often referred to as a 

separate carbon allotrope, see Figure 4, carbon nanotubes are also members of the 

fullerene family.  Carbon nanotubes are elongated fullerenes forming extremely high 

aspect ratio tubes.  An ideal CNT is capped at each end with the hemisphere of a 

fullerene.  Carbon nanotubes have similar σ-π bonding to graphite; however the radius of 

curvature of the tube causes unique properties, such as quantum confinement, that will be 

discussed below.   

 The properties of each of these allotropes of carbon vary greatly and open up many 

potential applications.  Diamond has both the highest hardness and thermal conductivity 

of any known solid while being an excellent electric insulator [10].  Graphite’s molecular 

sheets leave open bonds making electron transport easy resulting in semi-metallic 

conduction.  The weak bonds between planar sheets make it an excellent dry lubricant but 

consequently a very soft material [12].  Fullerenes have properties ranging between 

diamond and graphite.  Fullerenes, including nanotubes, form from carbon organizing in 
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different configurations resulting in different properties.  This research focuses on the 

properties and applications of carbon nanotubes, which stem from their unique structure. 

2.1.  Structure of Carbon Nanotubes 

 Carbon nanotubes fall into two broad categories, single walled carbon nanotubes 

and multi-walled carbon nanotubes.  Nanotubes are elongated fullerenes, however, 

nanotube structures are best described and understood from the perspective of a rolled 

graphene sheet.  Single walled nanotubes consist of a single rolled graphene sheet and 

multi-walled nanotubes are multiple SWCNTs nested inside of each other.  While this 

description has little in common with the actual process by which CNTs are formed, it 

provides an excellent method of uniquely describing CNTs and the corresponding 

fundamental physical properties.   

 In 1992, Hamada et al proposed describing the helical arrangement of the carbon 

hexagons in CNTs by referencing corresponding lattice points of a graphene sheet [13].  

The result indicates an infinite number of possible CNT structures with a simple method 

to uniquely describe them.  Hamada’s method simply consists of choosing an origin 

point, A, and another lattice point, A', on a 2-D graphene lattice as shown in Figure 5.  

Two single carbon atom hexagon unit vectors, a1 and a2, are defined as: 

1
3 1,

2 2
a

 
=   
 

a
,

2
3 1,

2 2
a

 
= −  
 

a
 

(1) 

  
where a is the length of the unit vectors and is determined from the carbon-carbon bond 

length as shown below [14]: 

3 cca a=  (2) 
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where acc is the carbon-carbon bond length [10].  The carbon-carbon bond length, usually 

given as 1.42Å, is an approximation because the actual bond length is slightly different 

due to the curvature of the carbon nanotube [12].  The carbon-carbon bond length for 

graphene at 1.41Å serves as a lower limit for acc because it is planar; as the radius of 

curvature decreases the bond length increases, for instance the C60 fullerene has a carbon-

carbon bond length of 1.44Å [10].   Using the unit vectors as a basis, a helical or chiral 

vector, Ch, can be defined between the origin and the chosen lattice point.  The chiral 

vector is defined as: 

1 2hC n m= +a a  (3) 
  

where n and m are integers [15].  When the graphene sheet is rolled such that the origin 

will be superimposed on the chosen lattice point a SWCNT is formed with the helicity or 

chirality described by the chiral vector.  A unit cell for a SWCNT can be determined by 

defining a unit vector for an unrolled CNT [14].  This CNT unit vector, referred to as the 

translation vector, is normal to the chiral vector and runs from the origin point A to the 

 
Figure 5.  Graphene lattice showing unit vectors a1 and a2, chiral 
vector, Ch, translation vector, T, and chiral angle, θ. 
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next lattice point intersection.  The translation vector is defined using the same basis 

vectors as before: 

1 1 2 2T t t= +a a  (4) 

where t1 and t2 are integers which can be determined from the index integers n and m.  

The equations for t1 and t2 as a function of n and m are given as: 

1
2

R

m nt
d
+

=
, 

2
2

R

n mt
d
+

= −
 

(5) 

  
Where dR is the greatest common denominator between (2m + n) and (2n + m) [14].  

Superimposing the chiral vector and translation vector at each end creates a rectangle that 

is defined as the carbon nanotube unit cell.  The number of hexagons (N) and 

subsequently the number of carbon atoms contained in a unit cell is also a function of n, 

m, and dR as shown below. 

2 22( )

R

m n nmN
d
+ +

=
 

(6) 

  
In the hexagonal lattice structure of a graphene sheet there are two carbon atoms per 

hexagon.  The same is true for the rolled CNT lattice making the number of carbon atoms 

in a CNT unit cell equal to 2N [14]. 

 The chiral vector, translation vector, chiral angle, and the corresponding nanotube 

diameter can all be determined from the integers, n and m [10].  Thus, SWCNTs are 

referred to using the simple indexing method, (n, m).  The three types of SWCNTs, 

zigzag, armchair, and chiral, are shown in Figure 5 with the corresponding chiral vector, 

translation vector and indexes for the chiral vector.  Figure 6 displays a molecular 

representation of the three types of SWCNTs [12]. 
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Figure 6.  Representations of the three types of SWCNTs (a) 
armchair: n = m; (b) zigzag: (n,0); and (c) chiral: (n,m) m ≠ 0 [12]. 

 
 All nanotubes with indexes of (n, 0) are called zigzag because of the shape formed 

by the carbon hexagons along the chiral vector.  The zigzag line forms the axis from 

which the chiral angle, θ, is measured [12].  Therefore, all zigzag nanotubes have a chiral 

angle of 0°.  Due to the six fold symmetry of graphene the maximum chiral angle is 30° 

[10].  SWCNTs at this extreme are called armchair nanotubes, also because of the shape 

formed by the carbon hexagons along their chiral vector.  Armchair nanotubes have 

indexes of (n, n) or in other words occur whenever m = n [14].  The final type of 

SWCNT, encompassing all nanotubes that are neither zigzag nor armchair, is the 

appropriately named chiral nanotubes.  Chiral nanotubes are truly chiral in nature 

meaning the nanotube and its mirror image cannot be superimposed.  It should be noted 

that both zigzag and armchair nanotubes are achiral [9].  The chiral angle of chiral 

(a) 

(b) 

(c) 
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nanotubes will be between 0° and 30° and can be calculated from the index using (7) 

shown below: 

( )tan 3
2

n
m n

θ  =  + 
 (7) 

  
where θ is the chiral angle in degrees, n and m are the nanotube index integers [12].   

 The carbon nanotube is “rolled” along the chiral vector, so the vector length defines 

the nanotube circumference.  The length of the chiral vector and subsequently the 

diameter can be determined from the index integers and the carbon-carbon atom bond 

length, acc.  Equation (8) can be used to calculate the diameter (D) of a given carbon 

nanotube [10]. 

2 23( )h ccC a n m nm
D

π π
+ +

= =
 

(8) 

  
 The diameters of SWCNT are limited by the energy required to maintain the tubular 

shape.  The smallest possible carbon nanotubes are theoretically the (5,0) zigzag CNT 

with a diameter of 0.39 nm, the (3,3) armchair CNT with a diameter of 0.41 nm, and the 

(4,2) chiral CNT with a diameter of 0.41 nm [16].  However, due to stability issues these 

nanotubes have not been grown as SWCNTs.  Recently, Guan et al grew dual walled 

CNTs with a (3, 3) armchair nanotube (diameter 0.41 nm) inside a (12, 3) chiral nanotube 

(diameter 1.08 nm) [16].  This is the smallest measured CNT to date.  At the other 

extreme SWCNTs are rarely larger than 2.5 nm due to a tendency to collapse into a nano-

ribbon at larger diameters [10].  SWCNT diameters typically fall in the 1 – 1.5 nm range. 

 MWCNTs can range in diameter from 1 nm, like the dual walled nanotube reported 

above, to over a hundred nanometers.  The distance between nested nanotubes is directly 
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related to the van der Waals bond or π bond that maintains the relatively weak bond 

between graphite sheets.  This π bond creates the distance between graphite layers 

(0.335 nm) [11].  The same bond, stressed by the curvature of carbon nanotubes, causes a 

similar separation between nested nanotubes (0.34 nm) [9].  As such, much like graphite, 

the multiple nanotubes in MWCNTs only weakly interact with each other. 

 The bulk of research and structure details focus on the sidewalls of carbon 

nanotubes.  The tips or ends of CNTs terminate in three ways, a carbon end cap, an open 

tube, or a catalyst nanoparticle.  CNT end caps form from carbon atoms creating six 

pentagons and as many hexagons as necessary to match the CNT sidewalls.  The very tip 

or base of the end cap can be a pentagon or hexagon as shown in Figure 7.  The 

hemispherical shape of the end cap is caused by the formation of six pentagons.  The 

placement of the pentagons determines the diameter and type of CNT the end cap will 

 
                                (a)                                                  (b) 
Figure 7.  a) Hexagon base end cap, six pentagons placed in black 
spaces will match zigzag CNTs, six pentagons placed in gray spaces will 
match armchair CNTs, and six pentagons placed in any combination of 
black, gray, or white will match chiral CNTs.  b)  Pentagon base end 
cap, five pentagons placed in spaces along solid arrows will match 
armchair CNTs and five pentagons placed in spaces along dashed 
arrows will match zigzag CNTs [17]. 
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match.  Increasing the distance of the pentagons from the end cap base increases the 

diameter of the end cap hemisphere.  When a hexagon base forms as shown in Figure 7 

(a), the placement of the six pentagons in black spaces will match zigzag nanotubes, 

placement in the gray spaces will match armchair CNTs, and any placement combination 

in black, gray, or white spaces will match chiral CNTs [17].  If the base is a pentagon as 

shown in Figure 7 (b), the five remaining pentagons placed in spaces along solid arrows 

will match armchair nanotubes, while placing the five pentagons in spaces along the 

dashed arrows will match zigzag nanotubes [17].  The C60 fullerene hemisphere has a 

pentagon base with the remaining five pentagons located on the first space along the five 

solid arrows.  The resulting diameter makes the C60 fullerene hemisphere the end cap for 

a (5,5) armchair CNT [18]. 

 The structures described above are valid for defect free single wall and multi-wall 

carbon nanotubes.  However, carbon nanotubes grown from most synthesis methods are 

rarely defect free, especially CNTs grown via chemical vapor deposition (CVD) methods.  

The common defects range from the relatively minor, such as heptagons and pentagons 

forming in the graphene lattice structure, to major defects that result in carbon nanofibers 

instead of nanotubes.  When a metal catalyst nanoparticle is used in the synthesis process 

to nucleate CNTs, the nanoparticle will cap one end of the nanotube.  The metal catalyst 

usually forms the cap at the tip or top of most MWCNTs due to the tip growth 

mechanism described in Section 2.5.  CNTs without end caps are considered open.  This 

can occur as a defect from early termination of the growth process; or CNTs capped with 

either carbon or a catalyst nanoparticle can be opened through an oxidation process.  The 
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oxidation process is accomplished with either wet chemistry using dilute nitric acid or 

with gaseous oxidants such as oxygen or carbon dioxide [2].  Opening CNTs is usually 

accomplished for applications requiring increased chemical reactivity such as chemical 

functionalization.   

 Minor defects, such as heptagons and pentagons in the sidewalls and the defects at 

the carbon-catalyst interface at the CNT tip, are all potential field emission sites.  Thus, 

for field emission applications such as this study these minor defects found in MWCNTs 

grown by CVD processes are necessary and will be discussed in Section 2.7. 

2.2.  Mechanical Properties 

 Since the discovery of CNTs the theoretical mechanical properties have driven 

much of the research.  The potential for a single molecule material made from abundantly 

available carbon that is stronger than steel and reversibly deformable is a powerful 

motivator for research.  CNTs have demonstrated these properties; however another 

unique and exciting feature, the nano-scale size of CNTs makes measuring mechanical 

properties accurately difficult.  Initial tensile modulus (Young’s modulus) measurements 

on MWCNTs, performed by measuring thermal vibrations with a transmission electron 

microscope, were reported as 1.8 TPa with a margin of error of ±0.9 TPa [19].  Later, 

measurement methods using an atomic force microscope reported Young’s modulus at 

1.28 TPa [19].  Different measuring techniques coupled with different CNT synthesis or 

growth methods have resulted in a wide range of values for Young’s modulus, especially 

for single walled CNTs.  The typical value of Young’s modulus used for MWCNTs is 

1 TPa [10], [12].  Reported values and theoretical calculations for Young’s modulus of 
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SWCNTs give a range of 0.5 – 5 TPa [20].  This wide disparity is well documented and 

has become known as “Yakobson’s Parodox,” after a researcher that published an 

extremely high theoretical calculation for Young’s modulus.  The disparity also stems 

from results showing dependence upon CNT radius and chirality [20].  Often the Young’s 

modulus for SWCNTs is given as a modest 600-1000 GPa with a mention that 

theoretically the value could exceed 5 TPa [10], [12].   

 The same issues that plague accurate measurements of CNT Young’s modulus 

extend to tensile strength as well.  Using an AFM to apply stress to a fixed SWCNT, 

Walters et al, were able to measure the tensile strength.  The results were reported as a 

lower bound for tensile strength and strain of 45±7 GPa and 5.8%, respectively [21].  

Tensile strength for MWCNTs has been measured as high as 150 GPa and theoretical 

calculations place the upper limit at 300 GPa [10].  A tensile strength of 45 GPa is 20 

times greater than steel and a Young’s modulus of 1 TPa is 5 times greater than steel 

while only a fraction of the density, 0.8 g/cm3 for SWCNTs, 1.8 g/cm3 for MWCNTs, 

and 7.7 g/cm3 for steel [22].  These reported values place CNTs as the strongest and 

stiffest material known [10].  CNTs can withstand extreme strains up to 40% without 

suffering from plastic deformations or breaking [22].  These results in both single wall 

and double wall CNTs demonstrate the remarkable flexibility and strength of the 

hexagonal carbon lattice structure.  As shown in Figure 8, nanotubes can fully recover 

from severe distortions even at angles greater than 90° without any plastic 

deformations [23].   
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                                  (a)                                                                    (b) 
Figure 8.  (a) 90º bent SWCNT and (b) bent MWCNTs; all CNTs recovered 
completely [23]. 

 
 Carbon nanotubes, much like the other carbon allotropes, are stable at high 

temperatures.  CNTs remain stable at temperatures exceeding 1500° C in an inert 

atmosphere [10].  The most interesting thermal property of CNTs is thermal conductivity.  

Theoretical molecular dynamics simulations indicate an incredibly high thermal 

conductivity of 6600 W/mK for an isolated SWCNT at room temperature which is much 

higher than even diamond [24].  The thermal conductivity for an individual MWCNT has 

been experimentally determined to be greater than 3000 W/mK [25].  The measured 

thermal conductivity of a SWCNT has been reported at 3500 W/mK [24].  These are 

some of the highest room temperature thermal conductivities reported until recently 

eclipsed by measurements of single layer graphene.  The thermal conductivity of single 

layer graphene reported by Balandin et al was 5300 W/mK [26]. 

2.3.  Electrical Properties 

 Research into the electrical properties of CNTs has focused primarily on single 

walled nanotubes.  The high aspect ratio and hollow nature of CNTs make carrier 

transport one-dimensional (1-D) in nature.  SWCNTs can be either metallic conductors or 

semiconductors depending on chirality.  The energy gap of semiconducting tubes is 



 

18 

directly related to the SWCNT diameter.  This coupled with the ability to sustain high 

current densities makes CNTs a leading candidate for nanoelectronics. 

 Much like the carbon nanotube structure, the electrical properties of SWCNTs are 

determined from the electrical properties of graphene.  As shown in Figure 9 (a), the 

hexagonal lattice structure of graphene is not a proper Bravais lattice.  The Bravais lattice 

is the two atom, A and B, based dotted rhombus; however the corresponding Brillioun 

zone in the reciprocal lattice, shown in Figure 9 (b), is hexagonal with labeled high 

symmetry points, Γ, K, and M [14].  Using the tight binding energy model, the energy 

dispersion relations for graphene can be calculated for the triangle formed from the high 

symmetry points.  The results for the π covalent bonds which are perpendicular to the 

graphene plane are shown in Figure 10, where the upper half is the π*-energy anti-

bonding band, and the lower half is the π-energy bonding band.  The unique feature of the 

 
                                    (a)                                                       (b) 
Figure 9.  a) The Bravais lattice unit vectors, a1 and a2, and unit cell.  b) 
The corresponding reciprocal lattice vectors, b1 and b2, and Brillouin zone 
of graphene [14]. 
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graphene band structure is the six K points where the two bands are degenerate and the 

Fermi level passes.  It has been shown through thorough calculations that at T = 0 K, the 

density of states is zero at the Fermi level, making graphene a zero band gap 

semiconductor [14].  It should be noted the many layers of graphene that make up 

graphite  cause the bands to overlap making graphite a metal because both bands are 

partially filled even at T = 0 K.  The unique zero band gap of graphene causes equally 

unique metallic or semiconducting properties, depending on chirality, for CNTs. Carbon 

nanotubes are considered one dimensional (1-D) because the periodic constraints caused 

by “rolling” the graphene sheet into a tube results in a 1-D Brillouin zone and N discrete 

1-D wave vectors parallel to the CNT axis, where N is the number of hexagons in the 

CNT unit cell discussed in Section 2.1.  The wave vectors along the tube axis are 

continuous for an infinite CNT and have a spacing of 2π/L for CNTs of finite length, L. 

 The band structure of a CNT can be determined using the zone folding 

approximation.  Zone folding assumes the electronic band structure of a CNT is 

equivalent to the band structure of graphene along the allowed N discrete wave vectors.  

 
Figure 10. The energy dispersion relations for 
2D graphite for the entire Brillouin zone [14]. 
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Essentially the discrete wave vectors of the CNT are superimposed onto the graphene 

Brillouin zone [9].  Each wave vector then forms a cross-sectional cut through the band 

structure of graphene resulting in N 1-D energy bands.  If one or more of the CNT wave 

vectors intercept a zero band gap K point on the graphene Brillouin zone then the CNT 

will be metallic.  If the CNT wave vectors do not intercept a K point, the CNT will be 

semiconducting.   

 Figure 11 (a) shows the wave vectors of a (3,3) SWCNT superimposed on the 

graphene Brillouin zone with the closest wave vectors cut through the graphene band 

structure displayed.  The wave vector intercepts two K points resulting in an overlapping 

band structure making the (3,3) SWCNT metallic.  Figure 11 (b) has the same display for 

a (4, 2) SWCNT.  Here the wave vectors do not intercept a K point; the resulting 

semiconducting band gap in the CNT band structure is clearly evident.  SWCNTs can be 

 
Figure 11.  a) Band structure of a (3,3) CNT.  b) Band structure 
of a (4,2) CNT.  (bottom) Wave vectors (white lines) are 
superimposed over graphene Brillouin zone (hexagon).  (top) 
CNT band structure are cuts through graphene band structure 
[27]. 
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classified as metallic or semiconducting based on the index (n, m) using the following 

relationship: 

3
n m q−

=
 

(9) 

  
If q is zero or an integer the nanotube is considered metallic.  Under all other conditions it 

will be semiconducting.  This works out mathematically that two thirds of all possible 

SWCNT are semiconducting while one third are metallic [9].  Armchair CNTs, indexed 

(n, n), are truly metallic with fully overlapping energy bands.  All other metallic carbon 

nanotubes as defined in Equation (9) have very small band gaps on the order of a few 

meV, the effects of which are negligable at room temperature [12]. 

 The energy band gap of semiconducting CNTs is inversely proportional to the CNT 

diameter as shown in Equation (10) [14]. 

cc
g

t a
E

D
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(10) 

  
Where |t| is the nearest neighbor Carbon-Carbon tight binding overlap energy (2.5 eV for 

2-D graphene), acc is the Carbon-Carbon bond length (1.42 Å), and D is the diameter of 

the CNT as calculated using Equation (8).  Another, more accurate, method of calculating 

the energy gap is given in Equation (11) below [20]. 
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Where  is the reduced Planck’s constant, and vF is the Fermi velocity.  The energy band 

gap ranges from less than 10 meV for near metallic CNTs to 1.5 eV for semiconducting 

CNTs with small diameters [20].  Figure 12, a plot of calculated zigzag nanotube 
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bandgap versus diameter, demonstrates the inverse relationship between bandgap and 

diameter.   

 It should be noted that only SWCNTs with diameters from 0.4 to 1.5 nm are 

actually grown because larger SWCNTs tend to collapse into ribbons [10].  The zero 

bandgap points are metallic CNTs that meet the conditions of Equation (9). The potential 

for a single material to be either metallic or semiconducting with a bandgap that can be 

engineered without doping is unique to carbon nanotubes.  The electron confinement due 

to the 1-D nature of CNTs by definition limits carrier transport to one dimension, along 

the CNT axis, as well.  This reduces electron scattering and correspondingly power 

dissipation.  The strong carbon covalent bonds that give CNTs remarkable strength and 

thermal stability discussed in Section 2.2 also resist electromigration allowing CNTs to 

sustain current densities as high as 109 A/cm2 [27]. 

 Currently, with only one minor exception discussed in Section 2.4, there is no 

known method of controlling the chirality of the multiple nested tubes that make 

 
Figure 12.  Bandgap versus radius for zigzag SWCNTs [7]. 
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MWCNTs.  Thus about one third of the nested tubes will be metallic and are expected to 

dominate the electrical properties of the entire tube.  As such, most MWCNTs tend to 

work as metallic conductors.  However, it has been shown experimentally that at low bias 

most electric conduction occurs in the outermost tube of MWCNTs with some interaction 

with interior tubes, indicating that at least for low bias conditions the properties of the 

outer most tube dominate the electrical properties [20]. 

2.4.  Synthesis of Carbon Nanotubes 

 Since Iijima recognized carbon nanotubes as a by-product of the arc discharge 

synthesis of fullerenes, the method has been refined for the fabrication of carbon 

nanotubes.  There are three main carbon nanotube fabrication categories that have since 

been developed: 

• Arc discharge synthesis 

• Laser ablation synthesis 

• Thermal synthesis. 

Efforts to produce higher quality, larger quantities, and improve control have 

yielded a myriad of fabrication methods within each of these categories.  The basic 

physics involved in each fabrication method defines the category. 

2.4.1.  Arc discharge 

 As mentioned above, arc discharge synthesis is also a well-documented method of 

producing carbon fullerenes which was the goal of Iijima when he first identified multi-

walled carbon nanotubes.  As such, arc discharge synthesis was the first synthesis method 

used to reliably produce both MWCNTs and SWCNTs [10].  Arc discharge or electric arc 
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discharge synthesis is accomplished by generating plasma between two graphite 

electrodes, as shown in Figure 13, using a low voltage, high current power supply.  The 

process occurs in an inert atmosphere of He or Ar with pressures ranging from 100 to 

1000 Torr [12].  The plasma contains vaporized carbon from the electrodes which then 

forms carbon nanotubes as it is deposited on the cathode and other areas of the reactor. 

 
Figure 13.  Basic electric arc discharge reactor. 

 
 SWCNTs can only be produced with the addition of a metal catalyst, usually added 

to the anode via a small hole where a catalyst/graphite powder mixture is placed.  The 

first metal catalysts used were iron (Fe) and cobalt (Co); but a mixture of yttrium (Y) and 

nickel (Ni) is the current standard for SWCNTs producing a high yield, up to 90%, and 

fairly uniform diameters averaging from 1.2 to 1.4 nm [12].  CNTs produced using the 

arc discharge synthesis method require purification before use due to carbon soot and 

fullerene by-products.  These processes, arc discharge synthesis and purification, have 

been well researched and developed.  MWCNTs and SWCNTs produced via arc 

discharge are commercially available. 
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2.4.2.  Laser ablation  

 The products of laser ablation is similar to arc discharge, both produce MWCNTs 

when a pure graphite target or anode is used; but can produce SWCNTs when the proper 

metal catalyst is present.  Laser ablation or laser vaporization, as the name implies, uses a 

continuous-wave or pulsed-wave laser to vaporize a graphite or catalyst metal infused 

composite graphite target.  The process occurs in a quartz furnace at 1200° C with a 

constant flow of inert gas, He or Ar [15].  Figure 14 is a simple schematic of a laser 

ablation synthesis method.  The vaporized graphite creates a plume with nanoparticles of 

the metal catalyst which facilitate the growth of SWCNTs.  The plume containing the 

carbon nanotubes and various by-products is swept through the furnace by the inert gas 

and collected via condensation on a cooled copper (Cu) collector.  The presence of 

carbon by-products makes purification necessary.  The diameter of SWCNTs produced 

from laser ablation average between 1.0 – 1.6 nm [12]. 

 
Figure 14.  Simple laser ablation reactor schematic [15]. 

 
2.4.3.  Thermal synthesis 

 Thermal synthesis is a broad category of synthesis methods that rely on thermal 

energy to produce CNTs.  Included in this category is plasma enhanced chemical vapor 

deposition (PE-CVD), which is a hybrid of plasma based and thermal based synthesis, 

and silicon carbide (SiC) surface decomposition which, though a true thermal process, is 
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not often included in discussions of thermal synthesis methods.  Due to the wide variety 

of options and precise control offered by thermal synthesis, chiefly chemical vapor 

deposition methods; this category has received the most attention from researchers and 

yielded the most promising results for controlled CNT fabrication. 

2.4.3.1. Flame synthesis 

 The simplest method for producing CNTs, flame synthesis involves a fire composed 

of the proper stock materials.  Flame synthesis has been used to produce both MWCNTs 

and SWCNTs by utilizing a hydrocarbon fire burning a mixture of 10% ethylene or 

acetylene, hydrogen gas (H2) and an inert gas (He or Ar) with catalyst materials such as 

Fe or Co particles [12].  The yield rates for flame synthesis are currently very low, but the 

inexpensive simple process makes this method very alluring as a potential fabrication 

method. 

2.4.3.2.   Surface Decomposition 

 The fabrication of carbon nanotubes by surface decomposition of silicon carbide 

offers some unique benefits.  First and foremost it is a catalyst free CNT synthesis, while 

other fabrication methods require metal catalysts, especially for the growth of SWCNTs.  

The by-products of surface decomposition are gaseous making purification processes, 

which can damage CNTs, unnecessary [28].  Finally, CNTs are vertically aligned and 

attached to the remaining silicon carbide substrate. 

 Surface decomposition is achieved through high temperatures in a relatively high 

vacuum.  The temperatures necessary for SiC surface decomposition range from 1500° C 

to 1700° C.  At these temperatures, it is theorized that the silicon becomes gaseous and 
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reacts with residual oxygen in the vacuum chamber.  The remaining solid carbon realigns 

in either SWCNTs or MWCNTs depending upon the temperature and pressure settings 

[28].  Vacuum pressures for the process range from 10-3 to 10-5 Torr [28]. 

 Surface decomposition as a carbon nanotube synthesis method is excellent; 

however applications for the end product are relatively few.  The problems that plague 

this process begin with the source material.  SiC is a difficult material to process and the 

high temperatures involved preclude patterning or other fabrication techniques which 

make integration into other fabrication technologies such as typical silicon based 

electronics impossible on a practical level.  These drawbacks tend to limit the attention 

surface decomposition receives especially when compared to the process friendly 

chemical vapor deposition synthesis methods. 

2.4.3.3.   Chemical Vapor Deposition 

 CVD as a synthesis method could be considered a broad category by itself because 

of the vast number of variations that are available.  The first and simplest form of CVD is 

thermal CVD.  A thermal CVD system, as shown in Figure 15, consists of a furnace, 

feedstock gasses, and a vacuum pump.  Resistive heaters or furnaces operate at 

temperatures ranging from 500° C to 1200° C in T-CVD systems.  A substrate or target 

 
Figure 15.  Thermal CVD furnace. 
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with Fe, Ni, Co, or an alloy of these three transition metals on the surface is placed in the 

furnace.  An anneal in a non-volatile gas can be performed to form the necessary 

nanoparticles from thin films of the above mentioned catalyst materials.  A carbon 

feedstock gas such as methane (CH4) or carbon monoxide (CO) for SWCNT growth or 

acetylene (C2H2), ethylene (C2H4), or benzene (C6H6) for MWCNT is flowed across the 

target substrate [19].  The gas reacts with the catalytic nanoparticles to produce carbon 

nanotubes. 

 CVD synthesis occurs at relatively low temperatures that allow more conventional 

substrates, chiefly silicon, to be used, opening up opportunities for integration of CNTs 

with conventional electronics, optoelectronics, and other applications.  With the proper 

growth conditions, pure CNTs can be produced with yield rates as high as 99% [12].  

Thus no purification or post processing is necessary unless the catalyst metal must be 

removed.  As a result thermal CVD and its many derivatives are the most widely used 

and researched carbon nanotube synthesis methods. 

2.4.3.4.   Plasma Enhanced Chemical Vapor Deposition 

 PE-CVD uses energy from H2 plasma generated from a DC, radio frequency (RF), 

or microwave power supply, to break down the carbon feedstock gas and facilitate CNT 

growth at lower temperatures and pressures.  Vertically aligned MWCNTs grown on a 

silicon substrate at temperatures below 330° C by microwave plasma enhanced CVD 

(MPE-CVD) have been documented [29].  Typical substrate temperatures range from 

400° C to 900° C [12].  PE-CVD systems are capable of growing both SWCNTs and 
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MWCNTs; more importantly these CNTs can be patterned, vertically aligned, and grown 

on a variety of substrates.   

 To date, the only synthesis method known to preferentially produce CNTs of a 

specific chirality is via remote PE-CVD, a system that generates a low power plasma 

away from the growth substrate [12].  Li et al demonstrated the growth of very narrow 

SWCNTs with diameters from 0.8 nm to 1.5 nm.  The chirality of these narrow diameter 

SWCNTs was such that 90% were semiconducting as opposed to 67% expected based on 

random growth [30].  Due to the lack of understanding of CNT growth mechanisms in 

general, the exact cause of this preferential growth is still unknown. 

 In order to achieve well aligned vertical CNTs an external magnetic or DC electric 

field in the form of a negative bias on the substrate is necessary.  Typical values range 

from -150 V for SWCNTs to -650 V for MWCNTs [31], [32].  A common MPE- CVD 

system is shown in Figure 16.  Microwave power, up to 1 kW, is transmitted from the 

generator through a wave guide to a microwave coupler that emits the radiation via the 

antenna into the CVD chamber.  If conditions are correct, the resulting plasma will be 

centered over the substrate and allow for CNT growth over large areas, >10 cm2.  The 

 
Figure 16.  Microwave plasma enhanced chemical vapor 
deposition system. 
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CNT growth and plasma formation are dependent upon a number of controllable 

variables: the microwave power, chamber pressure, gas composition, gas flow, and 

substrate temperature.  The ability to precisely control so many of the growth parameters 

is the key reason that CVD and PE-CVD in particular has become the most researched 

synthesis method.   

 All CVD methods require a metal catalyst nanoparticle to facilitate the growth of 

CNTs.  Fe, Co, and Ni are most common, although alloys consisting of these and yttrium, 

molybdenum (Mo), ruthenium (Ru), and platinum (Pt) have resulted in increased yields 

under specific conditions [12].  In thermal CVD processes the alloy FeCo results in 10-

100 times higher yields of SWCNTs over Fe alone [29].   

 There are a number of methods for depositing the catalyst on the substrate, many of 

which can be easily patterned making it possible to grow CNT arrays at desired locations.  

Common methods include soaking or spin coating the substrate with Fe, Co, or Mo 

nitrate oracetate salt and then drying the sample.  Sputtering or evaporating a thin layer of 

catalyst material on the substrate and then subsequently breaking up the catalyst into 

nanoparticles using a pretreatment of H2 plasma before introducing the carbon feedstock 

gas for CNT growth.  This method has been used extensively and a correlation between 

the deposited layer thickness and resulting CNT diameters, thicker layers result in larger 

diameters, has been documented [33], [29].  The pretreatment time and power, however, 

must be determined for any given thickness.   

 Contrary to the relationship between catalyst layer thickness and CNT diameter, a 

longer pretreatment time does not always result in smaller particle sizes.  Recently, 
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Amama et al reported that due to Ostwald ripening, pretreatment for too long will result 

in a lower CNT yield [34].  Ostwald ripening is a phenomenon related to strain energy 

that results in small particles shrinking and disappearing over time while large particles 

increase in size.  The Ostwald ripening effect is clear from Figure 17 where a 5 min 

pretreatment has resulted in fewer and larger particles than the 30 s pretreatment.  Nessim 

et al increased the MWCNT density yield by an order of magnitude by tuning the 

pretreatment process, including time and gas composition [35].  The control afforded by 

these catalyst deposition methods is limited to photolithographic methods for designating 

relatively large areas (> 1 µm) where CNTs can grow.  The CNT distribution and 

diameter is also only moderately controllable through pretreatment methods.  Sub-micron 

patterning methods that have proven successful for CNT fabrication are discussed below 

in Section 2.6. 

 
Figure 17.  TEM images of a) 30 sec pretreatment and b) 5 min 
pretreatment [34] 

 
 The pretreatment and growth process as indicated above is also dependent upon the 

gas composition, flow rate, and pressure.  PE-CVD systems use relatively low pressures 

ranging from 10 – 300 Torr [29].  Lower pressures reduce the presence of residual gasses 

allowing for more process control.  Flow rates depend upon the chamber pressure and gas 
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composition, but recipes reported in the literature range between 100 sccm and 400 sccm 

total gas flow rate.  The gas flow rate can affect the plasma location within the chamber, 

so the location of the gas inlet will also determine the total gas flow rate. 

 Gas composition also varies greatly from process to process.  Pretreatment recipes 

consist of pure H2, or some combination of H2 and Ar.  However, recent studies have 

indicated trace amounts (< 1%) of water (H2O) or nitrogen (N2) can significantly improve 

pretreatment effects resulting in greater density and smaller diameter of catalyst particles 

[34], [36].  During growth, the gas composition can be even more complex consisting of 

a carbon feedstock such as but not limited to CO, CH4, or C2H4, diluted in H2, Ar, N2, He, 

or some combination.  Many different working compositions are possible, but Nessim et 

al concluded the carbon feedstock gas must be greater than 6% of the gas composition to 

provide enough carbon stock for CNT growth [35].  Gas compositions usually contain 

between 10% and 40% feedstock gas.  Amorphous carbon, a common unwanted by-

product, is more reactive than CNTs which has led to the use of trace amounts of 

oxidizers such as oxygen (O2), H2O, and hydroxide (OH) and the use of ethanol 

(C2H5OH) as a feedstock gas with very promising results [12]. 

2.5.  Carbon Nanotube Growth Mechanisms 

 Carbon nanotube growth occurs in one of two places and via one of two methods at 

each location.  The type of growth, gas phase or substrate, depends upon the location of 

the catalyst particle.  When the catalyst and CNT formation occur in the chamber 

atmosphere, it is gas phase growth [12].  The more common substrate growth occurs 
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when the catalyst is deposited on the substrate.  Both types of CNT growth rely on either 

surface carbon diffusion or bulk carbon diffusion as the actual growth mechanism. 

 Surface carbon diffusion is thought to be the growth mechanism for low 

temperature synthesis methods.  The metal catalyst remains solid throughout the growth 

process and the “cracked” carbon from the feedstock gas diffuses around the particle 

surface.  The carbon nanotube nucleates around the side of the metal particle.  Since there 

is an abundant source of carbon from the feedstock gas, carbon continues to break down 

on the catalyst, diffuse around the particle, and facilitate nanotube growth [12]. 

 In bulk carbon diffusion the catalyst can be either a solid or liquid nano-droplet 

depending on the transition metal and process temperature.  The “cracked” carbon 

feedstock gas is dissolved by the catalyst until saturation at which point a carbon 

nanotube forms on the outer surface.  This is a vapor – liquid – solid transition, where the 

feed stock gas is broken down into a hydrocarbon vapor, then forms a metal-carbon 

liquid when dissolved by the catalyst, and finally transitions to a crystalline carbon solid 

in the form of a nanotube [12]. 

 Substrate growth via surface carbon diffusion is the most likely growth type and 

mechanism for PE-CVD methods.  This stems from the goals of most PE-CVD growth 

methods which is to keep the temperature low to facilitate more substrate options and the 

use of deposited catalysts for controlled growth.  Regardless of the growth mechanism 

substrate growth can occur at either end of the nanotube.  If the stiction of the catalyst 

particle to the substrate is sufficiently large the particle will stay adhered to the substrate 

and the CNT will form via base growth.  Tip growth occurs when the catalyst particle has 
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insufficient stiction.  In this case, the CNT adheres to the substrate and the catalyst forms 

the tip of the growing CNT.  Figure 18 illustrates both substrate growth conditions.  

While both base and tip growth have been observed with SWCNT and MWCNT 

fabrication, tip growth is dominant in MWCNTs and base growth is dominant in 

SWCNTs [12]. 

 
Figure 18.  Schematic of carbon nanotube base growth 
and tip growth from a substrate [12] 

 
 In theory, CNT growth should be capable of continuous growth as long as the 

feedstock carbon gas is supplied.  In reality, there are a number of conditions that can 

occur and impede or prematurely terminate the growth process.  Growth can only occur 

at the catalyst; base growth can be slowed and even stopped due to slow or a lack of 

diffusion of carbon down to the nanoparticle.  The carbon feedstock gas supplies an 

overabundance of carbon sometimes causing the deposition of amorphous carbon which 

can coat the catalyst and subsequently stop CNT growth.  Occasionally, the catalyst can 

form graphitic shells instead of a carbon nanotube which will block access to more 

carbon ending the growth process [12].  These are causes of poor growth conditions and 

can usually be avoided by adjusting the growth parameters. 
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2.6.  Sub-micron Patterning for CNT Synthesis 

 Pretreatment of a catalyst layer with temperature and plasma energy is successful in 

creating nanoparticles for CNT growth.  The process can be adjusted to a point, but the 

nanoparticle distribution and sizes are random and dispersive.  Thus, due to the 

correlation of CNT diameter to particle diameter, the CNTs are randomly distributed and 

have equally dispersive diameters.  To address these issues, some unique approaches 

have been used to place catalyst nanoparticles at desired locations to achieve a specific 

diameter of CNT.  The most successful method reported has been the use of e-beam 

lithography.  Teo et al used e-beam lithography to deposit 100 nm Ni catalyst dots at a 

10 µm pitch creating the separated array of vertically aligned single MWCNTs shown in 

Figure 19.  The Ni dots were 100 nm in diameter and 7 nm tall.  After a 700° C annealing 

before CNT growth, the diameter of the CNTs was 49 nm with a standard deviation of 

2 nm [37].  E-beam lithography clearly provides the control necessary to engineer the 

size and location of individual CNTs. 

 
Figure 19.  SEM image of single MWCNT array 
grown on 100 nm Ni catalyst [37]. 
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 Lin et al recognizing the expenses associated with e-beam lithography developed a 

method for nanometer scale patterning using an atomic force microscope (AFM) [38].  A 

Ni catalyst layer was patterned via oxidation by negatively biasing the AFM tip.  The 

non-oxidized Ni was then removed using a wet etchant followed by CNT growth.  4 µm x 

4 µm arrays were successfully populated with MWCNTs and Figure 20 (a) shows 

patterned nano-dots with diameters of 81, 62, 47, 33, and 27 nm for each row from top to 

bottom with Figure 20 (b) showing the resulting individual MWCNTs [38].  Some of the 

smaller nanoparticles did not facilitate CNT growth.  This is considered an issue with the 

growth parameters and not with the patterning process or resulting nanoparticle. 

 
                                (a)                                                (b) 
Figure 20.  SEM images of a) AFM patterned catalyst 
nanoparticles and b) individual MWCNTs grown from the 
nanoparticles [38]. 

 
 Nanosphere lithography has also been used successfully to control the diameter of 

fabricated CNTs [39].  Nanosphere lithography takes advantage of the self-assembling 

properties of polystyrene (PS) colloids.  The colloids are available in diameters from >10 

um down to 25 nm.  Using the surface tension of water adjusted with a dodecyl sodium 

sulfate solution, the colloids pack together on the surface of the water into large uniform 
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monolayers.  The monolayer is then transferred to the desired substrate, see Figure 21 (a), 

where it acts as a mask.  Ni is then evaporated onto the substrate and the PS layer 

dissolved in toluene.  The result is the uniformly distributed Ni triangles shown in Figure 

21 (b).  The size of the Ni nanoparticles, which in turn determines the diameter of the 

CNTs, is controlled by the size of the PS spheres.  PS with diameters of 0.5 µm and 1 µm 

resulted in CNT diameters of 50 nm and 100 nm respectively [40].   

 
                               (a)                                             (b) 
Figure 21.  (a) AFM image of 0.5 µm PS monolayer and (b) AFM 
image of Ni catalyst particles after PS mask is removed [39]. 

 
 An anneal performed at 900° C for one hour was used to turn the Ni triangles into 

spheres in preparation for CNT growth via PE-CVD.  The resulting CNT arrays are 

shown in Figure 22 with the 100 nm CNTs on the right and 50 nm CNTs on the left as 

grown from the corresponding 1 µm and 0.5 µm PS masks [40].  Figure 22 displays the 

fairly sparse arrays of uniform diameter CNTs that are the product of this type of 

nanosphere lithography. 
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                                   (a)                                                (b) 
Figure 22.  SEM images of CNT arrays resulting from 0.5 µm (a) and 
1 µm (b) PS spheres [40]. 

 

 Recently, another form of self-assembly masking method was developed to increase 

both CNT growth density and diameter uniformity.  Lee et al make use of block 

copolymers, covalently linked but chemically distinct polymers, that allow separate 

chemical processes after deposition.  Specifically, an asymmetric block copolymer of 

polystyrene and poly methyl methacylate (PMMA) was used according to the process 

shown in Figure 23 [41].  The PMMA self- assembles into cylinders with a 34 nm 

diameter and center to center separation of 72 nm.  The polystyrene, covalently bonded to 

the PMMA, fills the area between cylinders.  The block copolymer is spin coated onto the 

 
Figure 23.   Block copolymer nanopatterning process [41]. 

 

1 µm 100 nm 
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substrate and cured at 190° C for 72 hours.  Exposure to UV radiation and wet etch in 

acetic acid removes the PMMA cylinders leaving a uniform polystyrene mask.  A 7 nm 

layer of Ni catalyst is evaporated onto the substrate.  Lift-off is accomplished by 

dissolving the PS mask in toluene. 

 The catalyst particles deposited using the block copolymer nanopatterning increased 

areal density by an order of magnitude from 109 cm-2 to 1010 cm-2 and diameters 

decreased and became much less dispersive, see Figure 24 (a), when compared to catalyst 

particles created from typical pretreatment methods.  As would be expected, 

Figure 24 (b) shows the CNTs grown via nanopatterning improved similarly to the 

catalyst particles [41].  Block copolymer nanopatterning improves control of key CNT 

fabrication parameters, however, the excessive processing time may be a deterrent to 

wide spread adoption. 

 
                                     (a)                                                                      (b) 
Figure 24.  Statistical diameter distribution of catalyst particles (a) and CNTs (b) 
with and without block copolymer (B.C.) nanopatterning [41]. 

 
 The capability to pattern and control the diameter of CNTs is crucial for most 

applications.  While e-beam lithography is very effective, it is much too expensive and 
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time consuming to facilitate commercial fabrication of CNTs.  Thus, new novel 

nanopatterning methods are continually being researched and developed constantly, in an 

effort to find an inexpensive, commercially viable process. 

2.7.  Field Emission 

 In 1995, only four years after carbon nanotubes were introduced to the scientific 

community by Iijima, de Heer et al demonstrated the field emission capabilities of carbon 

nanotubes [42].  They fabricated a small electron gun from a 1 mm diameter MWCNT 

film with an extraction grid 20 µm from the film.  The electron gun was capable of 

producing current densities of 100 µA/cm2 at a voltage of 200 V.  At 700 V, the current 

densities were greater than 100 mA/cm2.  The Fowler-Nordheim model for the tunneling 

of electrons through a metal-vacuum potential barrier was used to validate the field 

emission currents.  These results spawned a flurry of research into the field emission 

capabilities of carbon nanotubes that has only increased in intensity over the ensuing 14 

years. 

2.7.1.  Fowler-Nordheim Model and Field Enhancement 

 The Fowler-Nordheim (FN) model describes the current or current density obtained 

from electrons tunneling through a metal-vacuum potential barrier at 0 K [2].  Other 

conditions for the Fowler-Nordheim model include tunneling from a flat metal surface; 

the metal or emitter is modeled as a free electron gas; and the potential barrier height is 

independent of the applied voltage [7].  Although the actual potential barrier is a 

combination of the image force potential and the external force potential as shown in 
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Figure 25 (a); typically a simplifying triangular barrier, shown in Figure 25 (b), is used 

instead [7].   

 The simplified, but correct, FN equation for current density from field emission is 

shown below [43]. 
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Where current density, J, is in A/cm2, a and b are constants of 1.54 x 10-6 AV-2eV and 

6.83 x 107 eV-3/2Vcm-1, t(y) and υ(y) are tabulated functions, F is the applied electric 

field, and φ is the work function.  The function t(y) is close to and so often set equal to 

unity.  The Nordheim function, υ(y), varies significantly; however, in what is considered 

an improper or gross simplification υ(y) is also commonly set to unity [44]. 

 The applied field is adjusted to account for the sharp tip of carbon nanotubes by 

including a field enhancement scale factor β.  The field enhancement factor takes into 

 
                                          (a)                                                           (b) 
Figure 25.  a) Metal--Vacuum potental barrier (U(x)), accounting for the image 
force (-e2/4x) and external applied voltage (-eFx) [43].  b) Triangular potential 
barrier approximation, EF is the Fermi level, V is the external applied voltage, and φ 
is the metal work function [7]. 
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account the microscopic or localized field at the emitter tip.  Electric field lines 

concentrate at the area of small radius of curvature resulting in much higher localized 

field potentials.  The applied field F, is considered a uniform field such as between two 

parallel plates and is defined below: 

VF
d

=
 

(13) 

  
where V is the applied voltage and d is the separation distance as shown in Figure 25 (b).  

The inclusion of the enhancement factor gives the localized field shown in Equation (14). 

Local
VF
d
β

=
 

(14) 

  
Field enhancement for field emitting CNTs has a wide range of reported values from 

1000 to 8000 and even as high as 26000 [3], [45].  Issues with determining field 

enhancement will be discussed below.   

 Including the simplifications mentioned above, the field enhancement factor, and 

converting from current density to current by including the total emission area the 

following FN current relationship is obtained: 
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where S is the emitting surface area in cm2.  By dividing by V2 and taking the natural log 

Equation (15) takes the form: 

3
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Equation (16) is easily recognized as the equation of a line for ln(I/V2) as a function of 

1/V.  Thus, FN field emission can be shown if a line results from plotting measurements 

of emission current as a function of the applied voltage in the form ln(I/V2) versus 1/V.  

This is often referred to as a Fowler-Nordheim plot and is used to demonstrate field 

emission as opposed to thermionic emission.  Figure 26 shows the Fowler-Nordheim Plot 

of two CNT carpet samples grown via MPE-CVD at AFIT.   

 
Figure 26.  Fowler-Nordheim plot showing experimental 
results with fitted line. 

 
 The slope of the FN plot, given in Equation (17), can be used to determine the field 

enhancement factor, β.  There is one caveat to this method of calculating the 

enhancement factor: the work function of the CNTs must also be known.  Initially, the 

work function was unknown and a constant work function of 5 eV was used [42].  Since 

then, there have been several methods employed to measure the work function of CNTs. 

Ultraviolet photoemission spectroscopy was used to measure the work function of 

SWCNT bundles at 4.8 eV, while other reported values ranged from 4.3 eV to 

5.7 eV [47]. 
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 Xu et al used a transmission electron microscope with a unique tungsten needle 

sample holder measured the work function of individual MWCNTs grown via MPE-

CVD.  The measurements indicated differences in the physical structure at the tube tips 

caused variations in the work functions from 4.51 eV to 4.78 eV [48].  These values 4.5 - 

4.8 eV have been adopted to estimate the field enhancement in more recent publications.  

Only MWCNTs are considered in this study as well, so a work function of 4.65 eV is 

used in all calculations.  Thus, for MWCNT samples #1 and #2, shown in Figure 26, the 

resulting field enhancement factors are 2390 and 3460 respectively.  A higher β is 

indicative of more efficient field emission.  The increased localized electric field results 

in field emission at lower applied voltages. 

 With all the assumptions and simplifications listed, it is obvious the FN model is 

not completely accurate for field emission from CNTs.  However, many experimental and 

theoretical efforts to develop an accurate model have yet to produce a conclusive result; 

while the FN relationship given above has been proven experimentally to be a good fit 

for I-V characteristics of CNT emitters of all kinds [7].  The sheer number of methods 

and processes used to achieve emission and the often seemingly contradictory results of 

different research efforts have made a functional model for electron emission from 

carbon nanotubes a difficult and elusive task. 
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2.7.2.  Carbon Nanotube Field Emission 

 As previously documented, CNTs have many unique properties ideal for field 

emission.  Carbon nanotubes make excellent electron emitters, not because of a low work 

function, but due to the extremely high local electric field that forms at the small diameter 

tips.  Single walled CNTs have diameters from 0.6 nm to 1.4 nm and multi-walled CNTs 

can range from 12 nm to more than 100 nm in diameter.  Both types of CNTs can range 

from tens of nanometers to microns and even millimeters in length resulting in incredible 

aspect ratios.  The resulting focus of the electric field at the tips of the CNTs is often 

referred to as the electric field enhancement factor discussed above in Section 2.7.1.  

Previous research as summarized by Bonard et al has shown multi-walled CNTs to be 

more robust emitters than single walled CNTs [49].  Thus, only multi-walled CNTs are 

grown in this field emission effort.  While the conductivity of single walled CNTs can be 

metallic or semiconducting depending on the nanotube structure, all multi-walled CNTs 

are considered metallic conductors because some of the nested nanotubes making up the 

multi-wall CNT will be metallic.  This makes attempts to control or consider the chirality 

or type of CNTs grown unnecessary; another benefit of using MWCNTs for field 

emission instead of SWCNTs. 

 Potential commercial applications are the driving forces behind CNT field emission 

research.  Different applications lead to different requirements, however, there are a few 

figures of merit that can be used to assess the relative quality of a CNT emitter.  Current 

density is the value most often given when reporting results of CNT field emission 

research.  Current density without knowing the associated electric field is of little use.  
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The area used to calculate current density is also important.  The current density from a 

single CNT can be remarkably high, basing the potential emission from an array of 

nanotubes on a single CNT has led to current density predictions as unfathomably high as 

107 A/cm2 [50].  But, due to screening effects, getting every CNT in a large area to emit 

electrons has proven to be a much more difficult task making current density 

measurements of individual CNTs useless in predicting the field emission from large 

areas of CNTs.   

 Commercial applications for field emission start at current densities around 

10 mA/cm2 for flat panel displays [50].  As an emission cathode for space craft electronic 

propulsion neutralization the total current and emission efficiency is more important than 

the current density, however the requirement for all space applications is generally 

smaller is better, current densities greater than 50 mA/cm2 would greatly reduce scaling 

[51]. But the Brusek Co CNT based cathode at half an inch and sustained output of 1 mA 

appears to have a current density of 0.2 mA/cm2.  For microwave electronics, the current 

density needs to be at least a sustained 1 A/cm2 to be competitive with the thermionic 

cathodes currently used [52].   

 Other important parameters that aid in comparing results are the turn-on field, Eto, 

threshold field, Eth, configuration (diode vs triode) and the corresponding dimensions, 

and the total emission current.  The turn on and threshold fields, much like diodes and 

transistors, are the fields required to achieve a given current density.  Bonard et al 

performed a survey of CNT field emission research in 2000; the results are shown in 

Table 1.  They used 10 µA/cm2 for Eto but there is no standard for turn on values so 
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researchers often don’t report them or don’t use the same current densities to represent 

turn on.  A current density of 10 mA/cm2 for Eth is typical, but not always recorded in the 

literature [49]. 

Table 1.  Bonard et al collected data on field emission from CNT films or arrays, see 
[49] for references to individual data sources [49]. 

 
d is the interelectrode distance, S the emission area, Eto and Ethr are the turn-on and threshold fields needed 
to produce an integrated current density of 10 µA/cm2 and 10 mA/cm2, and Jmax is the maximal current 
obtained without destruction of the emitter.  n. a. means that the value is not indicated or could not be 
deduced from the figures, and * indicates that the value was estimated or extrapolated from the presented 
data. 
 CNT field emission is achieved via two basic configurations, diode and triode, both 

shown in Figure 27.  The diode configuration is often used for its simplicity and out of 

necessity, because many CNT fabrication techniques are not compatible with a triode 

type set-up.  Field emission from a diode based device requires relatively high voltages to 

establish the necessary electric fields, due to the large distance, d, between the CNT 



 

48 

cathode emitters and the anode.  Triode based devices allow for much lower voltages by 

locating a gate structure close to the cathode, typically within a few microns.  The triode 

set up makes controlling or modulating field emission simpler due to the low voltage gate 

controlling emission. 

 
                          (a)                                                                    (b) 

Figure 27.  Schematic of a) diode and b) triode configurations for field emission. 
 

 Direct comparisons between different CNT field emission efforts are difficult as can 

be seen by trying to distill some meaningful conclusions from the data collected by 

Bonard in Table 1.  This represents only a small fraction of the literature reporting on 

field emission effects over the first five years through 2000.  Some conclusions and 

trends that Bonard et al recognized include [49]: 

• The density of a CNT film affects field emission.  A comparison showed that very 
low density films and very high density films performed much worse than a 
“medium” density film. 

 
• Field emission from CNT films tends to degrade overtime.  The exact cause is 

unknown, but residual gasses and current density have significant effects on 
degradation 

 
• SWCNT films tend to degrade up to 10 times faster than MWCNT films. Individual 

CNT emitters, both multi-wall and single wall, fail abruptly and irreversibly. 
 

• Study of individual emitters showed clear evidence of non-Fowler-Nordheim 
emission.  
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 A brief survey of field emission efforts since 2000 shows the results of these 

conclusions.  Table 2 details the measurements of a small sample of the field emission 

efforts since 2000 and the most noticeable trend is that almost all CNT films or arrays 

researched for field emission are multi-walled.  This is driven by two factors, first CNT 

field emission devices are reaching commercialization which means lifetime is of the 

utmost importance and, as noted above, MWCNTs degrade much slower than SWCNTs.  

Second, commercialization also requires easy, inexpensive, and reproducible fabrication 

techniques like MWCNT synthesis via any number of CVD methods.  Another trend not 

reflected in the data displayed in Table 2 is the orientation of the CNT emitters.  Even 

though field emission has been demonstrated in randomly aligned and even horizontally 

aligned CNTs, it is generally accepted that vertical alignment results in better field 

enhancement resulting in lower field strengths [10].  All the efforts recorded in Table 2 

use vertically aligned MWCNTs grown by some manner of CVD. 

Table 2.  Survey of reported CNT field emission since 2000. 

Ref. Emitter d (µm) S (mm2) E (V/µm) 
to/max 

Jmax 
(A/cm2) ~β Year 

[53] MWCNT 60 0.04 <1/3.2 0.3  2001 
[54] MWCNT 1 30 <1/5.5 17  2004 
[55] MWCNT 15 0.03 1.25/4 1.8 4250 2005 
[56] MWCNT 2 10µ 16.5/23 0.0012  2005 
[52] MWCNT  0.25 6.5/16.5 1.0  2006 
[3] MWCNT   <4/8 1.8 7588 2007 
[57] MWCNT 1000 0.002 <2/2.9 2.8 2500 2007 
[58] MWCNT 1000 12 ~0.1/0.15 0.010 >1000 2008 

        
 In his seminal publication, de Heer estimated a mere 0.1 % of the total CNTs were 

emitting [42].  They concluded only a tiny fraction of CNTs was sharp enough to be 

efficient emitters.  Since then, the phenomenon has been attributed to electrostatic 
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screening effects [7].  Nilsson et al conducted a study in screening effects by first 

performing 2D electrostatic simulations of field penetration between CNTs separated by 

different distances, visualized in Figure 28 [59].  The reduction in penetration as the 

CNTs are placed closer together reduces the field enhancement reducing the localized 

field.  Nilsson et al posited that the closer the CNTs are packed the flatter they appear 

with no separation between tubes being equivalent to flat metal.  Using these simulation 

results and corresponding experimental data between low, medium, and high density field 

emission arrays; an optimized separation distance of twice the height was determined 

[59].  Milne et al achieved this optimized height to separation using e-beam lithography 

to deposit 100 nm Ni dots over a 500 x 500 µm2 area [52].  The resulting grid, shown in 

Figure 19, contains 5 µm tall MWCNTs with a separation pitch of 10 µm.  The array 

produced a sustained current of 2.5 mA or a current density of 1 A/cm2.   

 
Figure 28.  Simulation of field penetration [59]. 

 
 Suh et al followed the Nilsson research with an experimental study in which the 

separation distances between an array of MWCNTs was fixed and the CNT heights were 

varied [60].  An optimized height to separation distance was obtained that differed from 

the Nilsson et al results.  They concluded that screening effects are not the only factor 

involved in the optimizing of height and separation.  As the height of the CNTs increases, 

the aspect ratio increases, improving the field emission efficiency.  There is a tradeoff 

between the increasing height of the CNTs and the screening effects of nearest neighbors 
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that results in a maximum field enhancement at a separation equal to the height of the 

CNTs or half the distance that Nilsson et al predicted [60].   

 Recently, Smith and Silva, conducted 3D simulations of CNT arrays to determine 

screening effects and optimized height to separation distance [61].  The 3D visualized 

contour plots of the local electric field of an 11 by 11 CNT array with a separation 

distance equal to height in Figure 29 clearly show the internal CNTs have smaller 

localized fields.  The outer most CNTs have localized fields 35% greater than the internal 

CNTs.  Running a series of different simulations varying the separation distance from 0.3 

to 5.3 times the CNT heights lead to two new conclusions.  First, Nilsson et al had 

underestimated the effects of screening with their 2D simulations.  Instead of a separation 

distance of two times the height; a separation distance of five times the height is 

necessary to avoid screening effects.  Second, much like Suh et al found experimentally, 

there is a trade-off between screening effects and emission efficiency.  Smith and Silva 

arrived at an optimized field emission array with an inter-nanotube separation of three 

times the CNT height [61].  To date, no experimental data is available on an actual CNT 

array optimized in this fashion. 

 
Figure 29.  Contour plots of local electric field of 11 x 11 CNT array 
with inter-nanotube distance equal to height [61]. 
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 Fabrication and testing of MWCNT bundles for field emission has led to 

completely contradictory results to all three CNT array optimizations discussed above.  

Manohara et al fabricated arrays of MWCNT bundles via thermal CVD on silicon 

substrates [55].  The individual CNTs had lengths of 50 ± 2 µm and diameters from 10 – 

20 nm.  When the Fe catalyst was patterned into arrays of dots ranging from 0.2 µm to 

5 µm, it was found that the CNTs would form rope like bundles for the dots greater than 

0.5 µm.  These bundles were grown in 0.5 x 20 mm arrays with inter-bundle spacing 

ranging from 2 – 100 µm.  Figure 30 shows a 5 µm diameter bundle array with 2 µm 

inter-bundle spacing.   

 
Figure 30.  SEM of 5 µm diameter bundle array with inter-bundle 
spacing of 2 µm.  Inset is a close up veiw of a single bundle tip [55]. 

 
 After completing field emission tests across all the arrays and correlating the data, 

Manohara et al found an optimized bundle diameter of 1 – 2 µm and inter-bundle spacing 

of 5 µm.  Smaller and larger inter-bundle spacing resulted in significantly less, up to two 

orders of magnitude, emission current as did both smaller and larger bundle diameters 

[55].  While difficult to reconcile with the optimized individual CNT arrays given above 
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because the heights of the bundles are 50 µm compared to 5 µm inter-bundle spacing, it 

is interesting that both cases result in a similar optimization of a “medium” density. 

 Fujii et al published similar results for CNT bundles in 2007, confirming that arrays 

of CNT bundles have emission properties that don’t match individually spaced CNT 

arrays or densely packed CNT films.  Large MWCNT pillars, 50 µm diameter and 70 µm 

tall, were fabricated on stainless-steel substrates using a multilayer catalyst (Fe and Al) 

via thermal CVD [57].  Five pillars were fabricated into an array shown in the inset of 

Figure 31.  This effort did not include any testing of different pillar or array dimensions, 

however, the field emission tests proved the array was very effective.  The array 

demonstrated low field operation with a threshold field of 2 V/µm and a remarkable 

2.8 A/cm2 at only 2.9 V/µm.  The corresponding Fowler-Nordheim plot showed an 

extremely close linear relation confirming field emission.  The bundle array also 

exhibited no degradation over a 200 hour test operating at 150 mA/cm2.  Fujii et al 

performed 2D simulations of the electric field over a single bundle and produced similar 

 
Figure 31.  SEM of MWCNT bundle 50 µm diameter and 70 
µm tall.  Inset is schematic of 5 bundle array [57]. 
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results to the 3D simulations of CNT arrays performed by Smith and Silva.  The 

simulation showed an increase in the electric field of over 250% (4.2 to 15 V/µm) from 

the inner area of the bundle to the outer edge.  The cause of the increase was attributed to 

edge and screening effects.  Although not experimentally verified, it was noted that this 

edge effect would cause emission to occur almost exclusively at the edges of each pillar.  

Clearly, there is much more to be learned about the field emission properties of CNT 

bundles and bundle arrays. 

 Triode based CNT field emission devices typically use conventional 

microelectronics or microelectromechanical systems (MEMS) based processes where 

structure layers are deposited and then etched to form specific features.  The process 

shown in Figure 32 developed by Wong et al consists of standard fabrication steps with 

the exception of MPE-CVD growth of CNTs at the end.  The SEM images in Figure 33 

are of a single array element from the top (a) and in profile (b).  The pretreatment process 

necessary before growth affects the catalyst in the open area more than the edges 

  
Figure 32.  Triode based CNT field emission device fabrication process [56]. 
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resulting in a beneficial convex CNT growth clearly visible in Figure 33 (b).  Stunted 

growth at the edges prevents electrical shorting with the gate, reduces screening effects, 

and increases device lifetime [56]. 

 Niemann et al have reported a fabrication method that may allow devices to take 

advantage of the exceptional field emission properties of CNT bundles and the 

advantages associated with a triode configuration [62].  The process also demonstrates 

the remarkable strength of CNTs.  Unlike most triode based devices, the integrated gate 

fabrication process begins with patterned CNT growth.  MWCNT bundles 10 µm tall 

with 10 µm diameters are grown in arrays with 15 µm center-to-center spacing.  Next the 

substrate and bundles are coated with an oxide layer of SiO2 via CVD using tetraethyl 

orthosilicate (TEOS).  Figure 34 (a) and (b) show a CNT bundle before and after oxide 

deposition.   

 A layer of Polyimide is spin coated on and fully cured; it will act as the dielectric 

layer for the finished device.  The gate metal, Mo in this case, is deposited and patterned 

to form the gate openings over the oxide encased bundles.  The patterned gate serves as 

the mask for subsequent oxide etch that removes the oxide coating from the CNT bundle.  

 
                               (a)                                                              (b) 
Figure 33.  SEM images: (a) single 10 x 10 µm2 pixel and (b) the 
corresponding profile [56]. 
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The entire array has yet to be fabricated, but a study was conducted on coating and 

releasing the CNT bundles.  Figure 34 (c) shows an apparently unharmed CNT bundle 

after oxide etching.  However, the analysis was based solely on SEM images, field 

emission data would need to be collected before and after the oxide process to determine 

if the CNTs are truly unaffected.  The possibility of protecting CNTs with an oxide layer 

opens up new fabrication options that are not possible when CNT growth has to be the 

last fabrication step. 

2.8.  Summary 

 Carbon nanotube field emission devices have matured and improved as the 

understanding of their unique emission properties has increased and innovative methods 

of fabrication have evolved.  This survey of recent literature documents the history and 

evolution of CNTs from an accidental discovery to an industry.  The unique mechanical 

and electrical properties of CNTs were described in detail with particular emphasis 

placed on those properties that are conducive to field emission.  Synthesis and growth 

mechanisms were explained and the specific growth methods used in this research effort 

are highlighted.  Carbon nanotube patterning processes are reported along with the 

 
Figure 34.  a) 10 µm diameter and height CNT bundle. b) CNT bundle 
coated with oxide layer. c) Released CNT bundle after oxide etch .  
Scale bars are 2 µm, 2 µm, and 5 µm respectively [62]. 
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processes applicability to large scale field emission arrays.  Finally, recent field emission 

research was surveyed and the performance recorded for comparison with results of the 

current research effort. 
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III. Plasma Enhanced CVD Carbon Nanotube Synthesis 

 

 The first step to achieving carbon nanotube field emission array devices is to 

develop a reliable process for synthesizing CNTs.  Of the many documented CNT 

synthesis methods, Chemical vapor deposition (CVD) synthesis occurs at low enough 

temperatures to facilitate silicon substrates.  Two CVD processes, microwave plasma 

enhanced CVD (MPE-CVD), and thermal CVD (T-CVD), were developed to produce 

MWCNT films or carpets.  The first, MPE-CVD, is explained in this chapter.  The 

second process, T-CVD, is described in Chapter IV.  Each synthesis method is described 

in detail to include substrate preparation, catalyst granulation, and the growth recipe. 

 Each step of the respective synthesis process and the resulting CNTs were 

characterized to develop an effective, reliable process for producing CNTs.  The first step 

in characterizing each synthesis process is using scanning electron microscopy (SEM) to 

determine the size and spacing of the granulated catalyst nanoparticles.  After CNT 

synthesis, the carbon nanotubes are characterized physically via Raman spectroscopy and 

SEM imagery.  Raman spectroscopy provides a method to determine the quality of the 

CNTs.  SEM micrographs are used to estimate CNT areal density, presence of amorphous 

carbon, and CNT physical characteristics such as diameter, length, and alignment. 

3.1.  MPE-CVD System 

 An Astex 1.5 kW MPE-CVD system was used for CNT Synthesis during this 

research effort.  The MPE-CVD system is shown with components labeled in Figure 35.  

The system has been upgraded with a 600 V DC supply for stage bias, a new 1.5 kW 
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microwave plasma generator system with a three stub tuner for improved tuning control, 

a pyrometer for exact substrate temperature measurements, and new resistive heating 

stage and power supply. 

3.2.  Substrate Preparation 

 CNT growth via MPE-CVD requires nanometer sized catalyst particles for the CNT 

to nucleate around and form.  Nickel and iron were used as catalyst materials; Ni with the 

MPE-CVD process and Fe with the T-CVD process.  A hydrogen plasma pretreatment is 

applied to the Ni catalyst to granulate the layer into nanoparticles conducive to CNT 

growth.  The most effective deposition method, catalyst thickness, and pretreatment time 

were determined by varying these parameters and analyzing the resulting catalyst 

nanoparticles and the resulting CNTs. 

 
Figure 35.  Astex MPE-CVD System [63]. 
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 Samples were prepared with a titanium (Ti) layer 200 Å thick sputtered or 

evaporated onto an n-type silicon wafer [100] to act as an adhesion and diffusion barrier 

for the nickel catalyst layer and the subsequent CNTs. The nickel catalyst layers had 

thicknesses of 10, 50, 100, 200, 350, and 500 Å with samples of each thickness deposited 

by both e-beam evaporation and DC sputtering.   

3.3.  Physical Vapor Deposition 

 Physical vapor deposition (PVD) is the process of creating a vapor via physical 

means and depositing the vapor to form a thin film.  There are a number of methods of 

physically creating a vapor.  E-beam evaporation and DC sputtering were used for 

depositions in this research.  Evaporation uses a thermal source to heat the target material 

to its melting point.  The resulting vapor impinges on the substrate and, after reaching a 

condition of supersaturation, condenses forming a thin film [64].  The Sputtering process 

is facilitated by ions from a gas discharge plasma accelerated in an electric field.  The 

electric field accelerates the ions towards the cathode, in this case the target material.  

The resulting collision and transfer of kinetic energy dislodges atoms from the target 

which then impinge on the anode, which is the substrate, forming the desired thin film 

[64]. 

 Figure 36 shows AFM phase measurements of as-deposited sputtered and 

evaporated 100 Å Ni catalyst layers on a Silicon substrate with a 200 Å titanium barrier 

layer.  The sputtered Ni clearly has larger grain sizes and more defined grain boundaries.  

Both evaporated and sputtered thin films are deposited in a condition of supersaturation 

which typically results in small grain sizes due to a high rate of nucleation [65].  With the 



 

61 

exception of impurities which can cause compressive stress, evaporated films generally 

have tensile intrinsic stress [66].  Sputtered films on the other hand have been shown to 

have both compressive and tensile intrinsic stress with stress reversal occurring through 

control of many parameters such as ion mass, substrate temperature, target-plasma 

separation, and especially gas pressure.  Sputtering at lower pressures typically results in 

compressive stress with tensile stress occurring at higher pressures.  The reversal occurs 

between 1 – 10 mTorr [65].  The compressive stress has been attributed to shot-peening 

effects and possibly sputter gas incorporation.  Radic et al demonstrated some control of 

the grain size of sputtered nanocrytalline nickel thin films.  Average grain size was varied 

from 11 nm to 150 nm by changing the substrate temperature during deposition [67].  

Thus, sputtered catalyst layers offer more control over the thin film properties than e-

beam evaporation. 

3.4.  Hydrogen Plasma Pretreatment 

 Before CNT growth is possible; it is first necessary to pretreat the catalyst layer, a 

process that granulates the catalyst into the necessary nanometer size islands.  The 

                         
 

                                 (a)                                                                    (b) 
Figure 36.  AFM image of as-deposited 100 Å of (a) evaporated Ni and (b) 
sputtered Ni. 
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catalyst nanoparticles are necessary for CNT growth and it has been shown that the 

diameter of the Ni nanoparticle corresponds closely to the diameter of the resulting 

CNT [68].  Using hydrogen plasma to granulate the Ni results in dispersed nanoparticle 

diameters, however, multi-walled CNTs can vary in diameter from less than 10 nm to 

100 nm in diameter.  The nominal goal for MWCNT growth for field emission 

applications is nanoparticles distributed around 50 nm or less. 

 The hydrogen plasma pretreatment was performed at 20 Torr with a substrate 

temperature of 400° C, an H2 flow rate of 135 sccm, and microwave power at 400 W.  

The granulation and CNT growth processes were adapted from Wong et al [68].  A set of 

samples of each thickness and deposition method were pretreated for 3.5, 5, and 

7 minutes.  The results were analyzed using SEM images and AFM measurements and 

recorded in Table 3 below. 

 Ni layers of 10, 350, and 500 Å were processed, however, 10 Å proved to be too 

thin and no Ni was present after even the shortest pretreatment time.  The thicker Ni 

Layers (350 and 500 Å) were too thick resulting in Ni islands much too large (>100 nm) 

to facilitate CNT growth.  Both evaporated and sputtered samples showed clearly that as 

the nickel thickness increases, so does the size of the granules.  The sputtered films 

consistently have larger granules than the evaporated films of the same thickness. This is 

attributed to the larger grain sizes of the as-deposited sputtered films.  In normal grain 

growth the average grain size increases because larger grains tend to grow while smaller 

grains tend to shrink and disappear [65].  Thin films seldom experience completely 

normal grain growth due to interactions with the larger substrate at grain boundaries and 
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the almost always prevalent conditions that favor certain grain orientations. For example, 

Nickel nanocrystals show a preference for the <111> direction to be out of plane which 

indicates grains of this orientation grow faster than other orientations [67].  The results, 

represented in Figure 37, show the sputtered nanoparticles remain slightly larger than the 

initially smaller evaporated nanoparticles, indicating that the general trend of normal 

grain growth applies. 

Table 3.  Pretreatment Study Results 
Treatment Time 

(Min) PVD Method Catalyst Thickness () Granule diameter (nm) 

3.5 

Evaporated 
50 30 
100 45 
200 75 

Sputtered 
50 35 
100 50 
200 80 

5 

Evaporated 
50 20 
100 45 
200 100 

Sputtered 
50 25 
100 58 
200 180 

7 

Evaporated 
50 No Catalyst 
100 No Catalyst 
200 40 

Sputtered 
50 40 
100 50 
200 60 

 
 The hydrogen plasma is expected to be a vapor etchant, which is considered 

beneficial during CNT growth where the H2 removes amorphous carbon [35].  When 

hydrogen plasma is used to granulate the catalyst layer during pretreatment, etching also 

occurs.  If the pretreatment process is too long and the catalyst layer too thin, it can be 
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completely etched away, as was the case with the 50 and 100 Å evaporated Ni layers 

after 7 minutes of pretreatment.  The 50 and 100 Å sputtered Ni layers were not removed 

during the 7 minute pretreatment.  

 Oddly enough, if the Ni catalyst is pretreated for too long the nickel nanoislands 

will begin to conglomerate creating islands with larger areas not suitable for CNT 

growth.  The average diameter of nanoparticles of the 50 Å sputtered Ni increased from 

25 nm to 40 nm from the 5 minute pretreatment to the 7 minute pretreatment.  This 

phenomenon has been documented and attributed to Ostwald ripening [34].  Thus, 

determining the optimum pretreatment time is a crucial step in the CNT growth process. 

 Apart from the size of the catalyst, the areal density of the Ni catalyst is another 

important consideration.  A high areal density will result in a dense CNT carpet which 

will aid in the growth of vertically aligned CNTs.  Table 3 shows that in all cases the 

evaporated samples have smaller diameter particles and Figure 37 clearly illustrates that 

the evaporated samples have a higher areal density compared to the sputtered samples.  

The 5 minute pretreatment resulted in granulation closest to the nominal goal of 50 nm 

nanoparticles.  The 50 Å evaporated and sputtered Ni catalyst was granulated into 

  
                                  (a)                                                                 (b) 
Figure 37.  100 Å Ni Layer after 5 minute pretreatment.  SEM image shows good 
nanoparticle formation, (a) evaporated Ni and (b) sputtered Ni. 
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nanoparticles averaging 20 nm and 25 nm, respectively; and the 100 Å evaporated and 

sputtered Ni was 45 nm and 58 nm.  The 200 Å Ni samples both had average particle 

sizes of more than 100 nm, but due to the dispersive nature of the process there were 

many nanoparticles less than 100 nm as well. 

 AFM measurements were used to determine the surface morphology of the catalyst 

nanoparticles, specifically the boundaries or separation between granules.  A 

representative AFM measurement comparing the 100 Å sputtered and evaporated 

samples is shown in Figure 38.  The evaporated sample has smaller diameter granules 

with a higher areal density than the sputtered sample.  For CNT growth, the pretreatment 

process must transform the Ni catalyst layer into Ni nano-islands and Figure 38 (a) shows 

that the evaporated samples have little to no spacing between their granules.  CNT 

growth requires the hydrocarbon gas to completely surround the Ni catalyst for 

nucleation.  The evaporated samples have many nanoparticles not completely separated, 

which may impede CNT growth. 

   
                                 (a)                                                                        (b) 
Figure 38.  AFM measurement of 5 minute pretreatment (a) 100 Å evaporated Ni 
and (b) 100 Å sputtered Ni. 
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3.5.  CNT growth 

 After the granulation of the catalyst has been accomplished the MPE-CVD system 

is adjusted to promote the growth of CNTs.  CNT growth is achieved by increasing the 

substrate temperature to 650° C, increasing microwave power to 1000 W, and 

maintaining the pressure at 20 Torr while introducing the carbon feedstock gas, methane 

(CH4), at a flow rate of 15 sccm and reducing the H2 flow rate to 120 sccm for a ratio of 

1:8, methane to hydrogen.  The samples used above to analyze the pretreatment process 

were not used for CNT growth.  Instead, samples with the same parameters were 

pretreated with the H2 plasma for the specified time and then subjected to the 2 minute 

growth process without being removed from the MPE-CVD chamber. 

 A CNT growth time of 2 minutes was used with a goal of 1.5 – 2 µm CNTs.  The 

10, 350, and 500 Å Ni samples were completely unsuccessful showing no CNT growth.  

This was expected, due to the lack of any Ni after pretreatment on the 10 Å samples and 

the lack of granulation on the 350 and 500 Å Ni samples.  The 50, 100, and 200 Å Ni 

samples all had some CNT growth.  From Figure 39 (a), (c), and (e) it is very clear CNT 

growth was minimal on the evaporated samples, while the sputtered samples had 

significant CNT growth.   

 As noted above, the AFM measurements indicated evaporated films tend to result in 

granules that are closely packed together and may not be completely separated which 

would impede the growth of CNTs.  The sputtered films in comparison showed complete 

granulation or separated nanoparticles in the AFM measurements, see Figure 38 (b), 

which resulted in successful CNT growth.   
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 Comparing Figure 39 (b), (d), and (f) the 50 Å sputtered Ni samples which had 

smaller average nanoparticle diameters with greater areal density resulted in denser 

growth with smaller diameter CNTs than the 100 Å and 200 Å sputtered Ni samples.  

There was no appreciable difference in the diameter of the CNTs between the 100 Å and 

200 Å sputtered samples, but the 100 Å sample had denser CNT growth.  The similarity 

in diameter with less dense growth would indicate the CNTs are only growing from the 

   
                               (a)                                                                  (b) 

   
                               (c)                                                                  (d) 

    
                               (e)                                                                  (f) 
Figure 39.  SEM image after 5 minute pretreatment and 2 minute CNT growth 
for (a) 50 Å evaporated Ni, (b) 50 Å sputtered Ni, (c) 100 Å evaporated Ni, (d) 
100 Å sputtered Ni, (e) 200  Å evaporated Ni, and (f) 200  Å sputtered Ni. 
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smaller diameter nanoparticles spaced between the relatively large diameter nanoparticles 

that covered the majority of the 200 Å sample area. 

 The CNT growth rate for this process was estimated at approximately 1 µm per 

minute based on SEM micrographs taken at the edge of the samples.  The growth time is 

measured as the time both the carbon feedstock gas is supplied in the presence of the 

microwave plasma.  MWCNTs approximately 2µm in length were achieved with a 

growth time of two minutes.  A CNT carpet of approximately 13 µm was achieved with a 

growth time of 15 minutes.  It should be noted that the lower portion of the CNTs tend to 

have some vertical alignment, however, the free ends do not.   

3.6.  Pretreatment Study Conclusions 

An experimental parametric study of hydrogen plasma pretreatment of Ni catalyst layers 

deposited on a Ti diffusion barrier determined an optimum pretreatment time, catalyst 

deposition method, and thickness for CNT growth via MPE-CVD.  As expected, thicker 

catalyst layers resulted in larger nanoparticles after pretreatment.  Most significantly, it 

was shown that sputtered catalyst films facilitate CNT growth much better than 

evaporated films despite SEM imaging indicating “better” granulation with the 

evaporated films.  The lack of CNT synthesis with evaporated catalyst layers was 

attributed to incomplete separation of the Ni nanoparticles shown through AFM 

measurements and the larger grain size and more defined grain boundaries of the initial 

sputtered Ni. While the thicknesses of the evaporated and sputtered layers were identical, 

there are clearly significant differences in the films.  The sputtered Ni was deposited at a 

pressure of 3.2 mTorr which is within the intrinsic stress transition range of 1-10 mTorr.  
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The sputtered film may have compressive stress, while the evaporated film is most likely 

under tension due to differences in the coefficient of thermal expansion between the Si 

substrate and the Ti and Ni metal layers. Grain size is also inversely proportional to the 

yield stress, another reason large grains tend to grow and small grains tend to shrink.  

Evaporated catalysts are often used successfully in other CNT synthesis processes.  Thus, 

these results have demonstrated a significant difference in the properties of sputtered and 

evaporated films in the same process conditions; not that evaporated Ni films cannot be 

used as a catalyst for CNT synthesis.  Thus, sputtered and evaporated catalysts should not 

be considered interchangeable in a CNT fabrication process.   

 Variations of the pretreatment time, catalyst layer deposition and thickness were 

used to achieve desired catalyst nanoparticle diameters while maintaining a relatively 

high areal density for the growth of CNTs.  The results of this study, as demonstrated 

with AFM measurements and SEM images, show a 50 Å sputtered Ni catalyst layer 

granulated for 5 minutes in a hydrogen plasma was the most effective recipe for growing 

dense CNTs via MPE-CVD.   

3.7.  CNT Characterization and Process Improvements 

 One of the advantages of MPE-CVD is the ability to control almost every aspect of 

the synthesis process, temperature, pressure, gas composition and flow, microwave 

power, and even the physical location of the microwave plasma.  This control makes it 

possible to fine tune the growth process and improve the quality of the CNTs.  The 

quality of the CNTs is assessed through SEM micrographs and Raman spectroscopy.  



 

70 

Having worked out an effective pretreatment process that granulates the catalyst into the 

desired nanoparticles allows the growth process to be adjusted to eliminate defects. 

3.7.1.  Raman Spectroscopy 

 Raman spectroscopy is a light scattering technique where an excitation laser is 

focused on the material of interest and the interaction of the photons with the material 

results in a small amount of light scattering at a slightly different frequency.  This slight 

shift in frequency is called a Raman shift and provides a unique finger print of the 

material.  Raman spectroscopy has been used for decades to identify carbon materials; 

and more recently has been shown capable of providing a myriad of information about 

well-ordered carbon materials such as doping, defects, diameter, chirality, and 

curvature [69].  Figure 40 shows the Raman shift of a number of carbon materials, 

 
Figure 40.  Raman shift of various carbon materials [69]. 
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graphene, highly ordered pyrolytic graphite (HOPG), single walled nanotubes (SWNT), 

damaged graphene, single walled nano-horns (SWNH), and amorphous carbon.  With the 

exception of amorphous carbon and HOPG these materials are all single atomic layers of 

carbon, which makes for specific and unique Raman shifts.   Raman spectroscopy does 

not work as well for MWCNTs because the multiple nested CNT walls result in some 

dispersive effects whether defects are present or not.  However, it is still very useful for 

identifying MWCNTs and determining the general quality based upon the Raman shift 

peaks present and the corresponding peaks relative intensities. 

 Raman spectroscopy was performed using a 532 nm green excitation laser, which 

provides Raman shift wavelengths from 200 – 3400 cm-1.  CNTs have a Raman shift with 

three primary peaks of interest within this range, D-band, G-band, and G’-band, that can 

be used to determine CNT quality [70].  The G-band peak is located at approximately 

1580 cm-1 and is a result of ordered C--C bonds, indicative of defect free graphene and 

carbon nanotubes.  The D-band, approximately 1350 cm-1, is a disorder induced peak 

caused by defects in the carbon structure.  A relative determination of CNT quality can be 

found by comparing the ratio of the D-band intensity over the G-band intensity (D/G). 

 The G’-band, approximately 2700 cm-1, is dispersive but it is the result of a double 

resonance process and is also very prevalent in Raman shift data for graphene, see Figure 

40.  DiLeo et al propose that in MWCNTs disorder or defects will reduce this double 

resonance process decreasing the G’ peak intensity; similar to the graphene and damaged 

graphene Raman shifts in Figure 40, when the graphene structure is damaged the G’ peak 

almost entirely disappears [70].  Thus, in order to have the G’ dispersive effect the carbon 
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structure has to be well ordered and free of the dispersive defects that cause the D peak.  

The ratio of the G’ peak intensity over the D peak intensity (G’/D) has been shown to be 

a more accurate indication of CNT quality than the more commonly used ratio of 

D/G [70].  The ratio, G’/G, was also recorded for completeness. 

 The use of the G’ peak as an indicator of MWCNT quality may have one caveat 

attached.  The G’ peak particularly and to some extent the G peak have greater intensity 

when the excitation laser is reflecting off the CNT sidewalls which can be defect free.  

The tips of MWCNTs are defective by nature due to the metal catalyst particle that caps 

the end.  Pristine, vertically aligned CNTs may not be represented well by Raman shift 

due the high defect density at the exposed tips.  Figure 41 shows an SEM image and 

Raman shift of vertically aligned MWCNTs purchased from Nano Lab, Inc.  The CNTs 

appear pristine in the SEM micrograph, yet the Raman shift shows a D/G ratio of 0.89 

which is worse than many of the CNT samples grown via T-CVD evaluated in 

Chapter IV.  The G’ peak is uncharacteristically low for a D/G ratio less than one.  It is 

possible that the DC-CVD process used at Nano Lab, Inc. to grow the CNTs results in 

vertically aligned, defective CNTs.  However, it’s more likely that the defects are 

   
Figure 41.  Commercial vertically aligned MWCNTs and Raman shift. 
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primarily at the CNT-metal barrier at the tips of the CNTs; and the Raman shift is not 

representative of the CNTs as a whole. 

 Often in the literature Raman spectroscopy is used solely to identify the presence of 

ordered carbon, especially for MWCNTs, by simply including a truncated Raman shift 

showing D and G peaks of any ratio as shown in Figure 42.  Seldom is the G’ peak 

discussed; most likely due to its absence because of the typically large D peak present in 

the Raman shift of MWCNTs.  Raman spectroscopy by itself does not provide a complete 

picture of carbon nanotube quality.  SEM images are also necessary to determine the 

areal density, presence of amorphous carbon, and physical characteristics of the CNTs 

such as alignment, length, and diameter.  It should also be noted that from the SEM 

micrograph in Figure 42, there appears to be no vertical alignment of the CNTs.  

However, a profile SEM micrograph shows the CNTs are vertically aligned for the first 

80-90% of their lengths [71]. 

 
Figure 42.  T-CVD grown MWCNTs with truncated Raman shift [71]. 

 
 The initial CNT growth recipe developed in Section 3.5 produced CNTs, but the 

results were not reliable due to microwave tuning difficulties and the lack of an optimized 
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recipe.  CNT carpets grown using this recipe and system ranged from those shown in 

Figure 39 above to the extremely poor quality CNTs shown below in Figure 43 (a) below. 

    
                                    (a)                                                                  (b) 

 
(c) 

Figure 43.  (a) Poor quality CNT growth; (b) defective CNT; (c) Raman shift. 
 

 These CNTs have diameters in excess of 100 nm and are extremely defective as 

shown in Figure 43 (b).  Samples of this poor quality do not qualify as carbon nanotubes, 

but should be referred to as carbon nano-fibers.  This characterization is further supported 

by the Raman shift shown in Figure 43 (c).  There is a very high disordered D peak with 

almost no ordered G peak resulting in an ID/IG ratio of 2.33.  As mentioned above, 

without any substantial order the second order G’ dispersive peak has very little intensity.  
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The Raman shift as a whole is very similar to the damaged graphene Raman shift shown 

in Figure 40 rather than any of the ordered forms of carbon measured.  Defective CNTs 

of this magnitude are unacceptable for any application. 

3.7.2.  Improved MPE-CVD Synthesis Process 

 After upgrading the microwave power generation system which made precise 

tuning and plasma generation possible; the CNT growth recipe was adjusted to improve 

CNT growth.  Adjustments were made primarily to the pressure and methane to hydrogen 

ratio.  Relatively small changes in pressure can have significant effects on the microwave 

plasma in the chamber where increases in pressure push the plasma ball towards the 

sample stage.  In this case a reduction in pressure raised the plasma ball slightly above 

the stage.  The second adjustment was to the gas mix ratio.  The gas flow of both gasses 

was increased slightly, H2 was increased from 120 to 125 sccm, which allowed the same 

gas flow for both the pretreatment and growth phases simplifying the process slightly.  

The CH4 was increased from 15 to 20 sccm increasing the gas ratio from 1:8 to about 1:6 

providing more carbon for the CNT synthesis.  Increasing the CH4 ratio above 1:6 

resulted in carbon saturation and caused the formation of significant amounts of 

amorphous carbon.  The precise control over the microwave plasma and the slight 

adjustments to pressure and process gas flow rates led to a final MPE-CVD process 

recipe with repeatable quality CNT growth.  This improved growth recipe is listed below. 

3.7.2.1. MPE-CVD Recipe 

 The improved MWCNT growth process employed for the MPE-CVD system 

begins with removing as many potential contaminants as possible by evacuating the 
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chamber below 10 mTorr after the sample is loaded.  Then the graphite stage and sample 

are heated to 400º C with H2 flowing at 125 sccm and chamber pressure maintained at 15 

Torr.  Once the system has reached a steady state, the granulation pretreatment of H2 

plasma induced by 400 W of microwave power is conducted for 5 min.  The microwave 

power is terminated at the end of the 5 min pretreatment and the temperature is increased 

to 650º C while maintaining the same gas flow and pressure.  The growth phase occurs 

for 1-2 min at 650º C, 5 Torr, H2 at 125 sccm, methane (CH4) at 20 sccm, and 1000 W of 

microwave power.  A 2 min growth results in MWCNTs of 2 – 5 µm in length.  Both the 

methane and microwave power are shut off to end the growth phase.  The hydrogen flow 

and chamber pressure are maintained to facilitate cooling. 

3.7.3.  MWCNT Quality Analysis 

 Figure 44 shows an SEM micrograph and Raman shift of two representative 

samples grown via this improved recipe with all barrier and catalyst layers deposited via 

sputtering.  The CNTs have a high areal density and are uniform in diameter with most 

CNTs being close to the desired 50 nm.  The bright spots at the CNT ends are caused by 

catalyst particles that facilitated tip growth and now form a cap or plug at the CNT tip.  

The samples were clean having no observed amorphous carbon and the Raman shift 

varies only slightly from sample to sample.  Unfortunately, the samples have high defect 

densities with the D peak being dominant which virtually eliminates the G’ peak.  The 

Raman shift peak ratios for samples (a) and (b), shown in Figure 44, are: 

•   D/G  (a)  1.26 (b)  1.58 
•   G’/D (a)  0.19 (b)  0.14 
•   G’/G (a)  0.15 (b)  0.09 
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Based on the Raman shift, sample (a) is a better quality CNT growth with a slightly 

lower D/G and higher G’/D ratios.  In cases such as these where the D peak is dominant, 

the best indicator of quality from the Raman shift will be the D/G ratio.  As the D/G ratio 

drops below one and the G’ peak increases; the larger G’/D ratio will become a more 

important indicator of MWCNT quality.  Presently, it is not clear if there is a desired 

value for the G’/G ratio.  While the CNTs of both samples do not appear to be vertically 

aligned the visible presence of the CNT tips in the SEM image, especially in sample (a), 

is indicative of some alignment.  The repeatable, clean, dense, CNT growth with Raman 

shift indicating a quality of growth similar to other reported efforts for MWCNTs grown 

via CVD methods, see Figure 42, validates the improved MPE-CVD growth recipe used.  

    
(a) 

    
(b) 

Figure 44.  MPE-CVD grown CNTs and the corresponding Raman shift. 
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There is still significant room for process improvement--the defect density should be 

reduced and the end goal is still vertically aligned MWCNTs. 

3.8.  Summary 

 This chapter documented the steps to successful CNT synthesis via MPE-CVD.  A 

detailed study of the catalyst and barrier layer materials was conducted to develop a 

pretreatment step capable of granulating the catalyst to the desired particle size.  The 

growth phase was fine tuned to improve repeatability and quality of the MWCNTs.  The 

resulting CNTs were characterized using SEM micrographs and Raman spectroscopy.  

The results of diode configured field emission tests with the CNT carpet samples 

characterized in this chapter are reported on in Section 4.4 with the results of T-CVD 

carpet samples for ease of performance comparisons.  
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IV.   Thermal CVD CNT Synthesis Development and Characterization 

 

 Thermal CVD is the simplest of the various CVD synthesis methods available.  It is 

simply flowing the correct gas mix through a large resistive heater.  If the temperature, 

pressure, gas mix and flow rate, are correct CNTs will form.  T-CVD synthesis, just like 

MPE-CVD synthesis described in the previous chapter, begins with substrate preparation.  

This chapter describes a parametric study of different catalyst and barrier materials’ 

thicknesses were varied and the resulting CNT carpets were characterized and tested for 

field emission. 

 The physical characterization is carried out with SEM observations and Raman 

spectroscopy as described in Chapter III.  Next the field emission properties of the CNTs, 

including the MPE-CVD grown samples, are characterized to include turn-on electric 

field strength, maximum current density at a fixed electric field strength, current density 

versus electric field strength relationship, and a Fowler-Nordheim plot is used to 

calculate field enhancement.  Field emission tests are performed in a diode configuration 

under high vacuum.  The CNTs are grounded and act as the cathode.  The anode is a 

copper collector plate located above the CNTs.  The anode is swept across a positive 

voltage range.  The field emission current is measured through the anode and the current 

density is calculated using the area of the sample under test.  The current density vs. 

electric field relationship is collected as the anode voltage is swept across the voltage 

range and displayed in a corresponding graph.  The Fowler-Nordheim plot as derived in 

Section 2.7.1 from the Fowler-Nordheim model provides evidence the recorded current 
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density was the result of field emission as opposed to thermionic emission and was used 

to calculate the field enhancement factor. 

 All the CNT characterization and field emission data is collected and relationships 

between the quality of the CNT carpet growth and the resulting field emission properties 

are defined.  Due to the results of another research effort that indicated a carbon buffer 

layer may facilitate CNT growth, the effects of an additional carbon buffer layer between 

the barrier and the catalyst on CNT quality and field emission was also investigated.  

Finally, the barrier/catalyst combination that makes the best field emission source was 

determined. 

4.1.  Substrate Preparation 

 Previous research with T-CVD had focused on non-conductive barrier layers on a 

Si substrate.  A conductive barrier is required for field emission applications.  Previous 

research has indicated that the barrier layer material can significantly affect the 

granulation process [72].  Thus, it was necessary to develop a process beginning with a 

conductive barrier layer.  To that end, each silicon substrate was first coated with a 

barrier layer of titanium or chrome.  This thin film acts as an adhesion layer and as a 

diffusion barrier preventing the formation of metal silicides.  It also facilitates the cathode 

connection to the CNTs during field emission.  Only a thin barrier layer, ~25 nm, is 

required for the purposes of adhesion and diffusion barrier, but a thicker layer, ~100 nm, 

was considered to improve conductance during field emission.  Sputtered Ni and Fe were 

used as the catalyst layers, but unlike the MPE-CVD process the Ni catalyst did not result 

in CNT growth.  Iron catalyst was deposited on both barrier materials in thicknesses of 
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10 nm and 2 nm.  All of the barrier and catalyst layers were deposited via DC magnetron 

sputtering. 

4.2.  T-CVD CNT Synthesis Recipe 

 The quartz chamber and samples are prepared for growth by evacuating the 

chamber down to less than 10 mTorr for 15 minutes; after which an Ar+H2 mix (95% + 

5%) is flowed through the chamber to remove unwanted contaminates.  The chamber is 

then evacuated again for an additional 15 minutes.  Now that the samples and chamber 

are prepared, the Ar+H2 gas mix is flowed while the chamber pressure is stabilized at 

approximately 90 Torr for the remainder of the entire process.  The sample is annealed at 

750° C to form iron nano-islands necessary for CNT synthesis.  Next, the growth phase 

begins with the introduction of the carbon feedstock, in this case an Ar+C2H2 (90% + 

10%) mix, into the chamber.  Growth times ranged from 2 - 20 minutes, resulting in 

MWCNTs measuring from 5 – 30 µm in length.  The growth phase is followed by a short 

clean phase with Ar+H2 flow while the chamber temperature is maintained at 750° C.  

This removes any weakly bonded residual surface carbon contamination from the sample.  

Finally, the chamber is cooled to room temperature over a 45-60 minute period with a 

constant flow of the Ar+H2 mixture. 

4.3.  CNT Characterization 

 Figure 45 shows SEM micrographs and the Raman shifts of the highest quality (a) 

and lowest quality (b) T-CVD grown CNTs based on the Raman shift data.  The highest 

quality MWCNTs of all the different catalyst/barrier combinations considered was from 

10 nm of  Fe catalyst on a 100 nm Ti barrier with D/G and G’/D ratios of 0.47 and 2.52 
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respectively.  The lowest quality MWCNTs, with a D/G ratio of 1.09 and G’/D ratio of 

0.63, are from the catalyst/barrier combination of 2 nm of Fe on 20 nm of carbon which 

is on a 25 nm Ti barrier.  This sample reinforces the claim that the first order D peak 

dispersive effects prevent the secondary double resonance G’ peak dispersive effects.  

The Ti25/C20/Fe2 sample is still much better quality, as far as CNT defects, than any of 

the MWCNTs measured from the MPE-CVD process.  However, as mentioned above, 

Raman spectroscopy provides a relative measure of the quality of the CNTs, but SEM 

imagery is required to complete the characterization of the CNT carpets. 

  
(a) 

  
(b) 

Figure 45.  SEM micrograph and Raman shift of (a) highest quality and (b) lowest 
quality MWCNTs grown via T-CVD.  

 

Amorphous carbon 

2 µm 

3 µm 
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 SEM micrographs of the highest and lowest quality CNT samples per Raman 

spectroscopy lead to different conclusions about the quality of the CNT carpet.  The SEM 

image of the highest quality CNTs in Figure 45 (a) are sparse with large amounts of 

amorphous carbon deposited across the substrate surface.  Also, the diameter of the CNTs 

varies widely from ~20 – 100 nm.  While the individual CNTs present may have few 

defects, the overall quality of the CNT carpet is poor due to the low areal density, 

amorphous carbon deposits, and diverse diameters.  SEM image of Figure 45 (b) shows a 

much higher density of CNTs with less dispersive diameters.  These CNTs may have 

more growth defects, but the CNT carpet is much better than the sparse growth visible in 

Figure 45 (a). 

 Table 4 lists the Raman shift intensity ratios and SEM based qualitative assessment 

of CNT growth for all catalyst/barrier combinations.  The chrome barrier of both 25 and 

100 nm thicknesses performed poorly.  Two combinations, Cr100/Fe2 and 

Cr100/C20/Fe2, did not grow CNTs at all.  In Figure 46, the SEM micrograph of the 

catalyst after the anneal and growth process revealed poor granulation with the expected 

nano-islands spanning hundreds of nanometers instead of the desired 25 - 50 nm.  It is 

also likely that the large nanoparticles are primarily Cr with little or no Fe present.  The 

Cr100/Fe13 sample grew a sparse CNT carpet with CNT diameters in excess of 100 nm 

putting them closer to carbon fibers rather than carbon nanotubes.  The addition of 20 nm 

of carbon improved the anneal process for the Cr barrier samples.  The Cr100/C20/Fe10 

sample showed an improvement over the Cr100/Fe13 sample in both D/G and G’/D 
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ratios and the CNT diameters were reduced to less than 100 nm.  But the Cr100/C20/Fe2 

did not grow CNTs the same as its counterpart the Cr100/Fe2 sample. 

Table 4.  Raman shift peak intensity ratios and SEM based qualitative 
assessment of CNT growth for all catalyst/barrier combinations. 

Barrier Layer Type & 
Thickness (nm) 

Catalyst 
(nm) D/G G'/G G'/D Areal 

Density 
Overall 
Growth 

Chrome 

100 13 0.69 0.82 1.20 Low Poor 
100 2 No CNT Growth 
25 10 0.48 1.11 2.31 Low Poor 
25 2 0.88 0.72 0.82 Medium Poor 

Chrome & 
Carbon 

100 & 20 10 0.60 1.09 1.82 Medium Good 
100 & 20 2 No CNT Growth 
25 & 20 10 0.54 1.19 2.19 Low Poor 
25 & 20 2 0.81 0.89 1.10 Medium Poor 

Titanium 

100 10 0.47 1.19 2.53 Low Poor 
100 2 0.56 0.95 1.71 Low Poor 
25 10 0.48 0.99 2.06 Medium Good 
25 2 0.90 0.86 0.96 Medium Good 

Titanium & 
Carbon 

25 & 20 10 0.48 1.09 2.26 Low Poor 
25 & 20 2 1.09 0.69 0.63 Medium Poor 

MPE-CVD #1 Ti 20 Ni 10 1.26 0.20 0.16 High Good 
MPE-CVD #2 Ti 20 Ni 10 1.58 0.15 0.09 High Good 
 
 

 
Figure 46.  SEM of Cr100/Fe2 after T-CVD process. 

 
 The 25 nm chrome samples had poor overall CNT carpets.  The Cr25/Fe10 sample 

was almost identical to the Ti100/Fe10 sample shown in Figure 45 (a), sparse growth of 
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low defect CNTs with large deposits of amorphous carbon.  The addition of 20 nm of 

carbon to the Cr barrier layers improved the Raman shift ratios slightly in the 

Cr25/C20/Fe2 case, but made the D/G and G’/D ratios slightly worse for the 

Cr25/C20/Fe10 case.  In both cases there was no appreciable difference in the SEM 

micrographs between the carbon and no carbon buffer layer combinations. 

 All titanium barrier combinations produced CNT carpets; although the 100 nm 

titanium samples had anneal issues that resulted in low defect CNTs with poor overall 

CNT carpet growth as discussed above and shown in Figure 45 (a).  The 25 nm titanium 

barrier proved most effective for growing MWCNT carpets.  The Ti25/Fe10 sample, 

shown in Figure 47, produced a medium to high density, low defect CNT carpet with 

little to no amorphous carbon and fairly uniform diameters.  The Ti25/Fe2 carpet had a 

lower areal density with more CNT defects as evidenced by the Raman shift ratios.  

Adding the carbon thin film to the Ti barriers had little effect on the Raman shift 

characteristics, but made the overall CNT carpets less dense with more amorphous 

carbon deposits; for the Ti25/C20/Fe10 case the amount of amorphous carbon was 

significantly increased. 

   
Figure 47.  SEM micrographs of CNT carpet grown by T-CVD on 
Ti25/Fe10 sample. 
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 Using thermal CVD, the 25 nm Ti is clearly the most effective barrier with the 

Ti25/Fe10 nm sample producing the cleanest, defect free CNT carpets out of all the 

barrier/catalyst combinations.  The 100 nm Ti and both Cr barrier thicknesses have 

different thermal properties that will require extensive study to determine an appropriate 

anneal process for each barrier/catalyst combination to achieve catalyst nano-islands 

conducive to CNT synthesis.  The addition of sputtered carbon as a buffer between the 

barrier and the catalyst did not reduce the effects of changes to the barrier, but rather 

added another change to the thermal properties during the anneal process.  The addition 

of carbon on the chrome barrier improved the anneal process and subsequent CNT 

growth.  However, the carbon layer degraded the overall quality of the CNT carpet 

growth when added to the Ti barrier, most likely due to the increased amorphous carbon.   

 The MPE-CVD grown CNT carpets are defect prone, but have no discernable 

amorphous carbon and have the highest areal density.  MPE-CVD also offers precise 

control of the CNT growth conditions in the MPE-CVD process making it possible to 

achieve CNT carpets with uniform lengths.  The CNT carpets of the two samples 

considered are approximately 2 µm in length.  The short length is necessary for future 

integration into gated field emission devices.  The T-CVD process does not have as much 

control over the growth conditions of the CNTs.  Figure 48 shows a Ti25/Fe10 sample 

with a CNT carpet from a 2 minute growth.  The CNTs are less dense than the 20 minute 

growth shown in Figure 47, but still are in excess of 10 µm in length with many 

exceeding 15 µm.  Integration of CNTs grown by T-CVD into gated field emission 
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devices is unlikely until the lack of uniformity and control of the CNT lengths is 

resolved. 

   
Figure 48 .  SEM micrographs of CNTs grown by T-CVD for 2 minutes 
on Ti25/Fe10 sample. 

 
4.4.  Field Emission Results 

 After CNT characterization with Raman spectroscopy and SEM imagery, the CNT 

carpets were tested for field emission.  This section describes the test chamber and the 

testing procedures used to obtain field emission properties of each sample.  This 

performance data is collated and compared with the physical characterization to 

determine the most effective catalyst/barrier combination. 

4.4.1.  Test Chamber 

 The CNT field emission test chamber, shown in Figure 49, provides a high vacuum 

controlled environment down to 2x10-7 Torr.  The load lock system allows samples to be 

changed quickly while maintaining high vacuum in the main chamber.  Two associated 

DC power supplies provide voltages from 0-5000 V and 0-1250 V.  The test stage and 

chamber feed-throughs have 7 wired ports.   All testing procedures have been automated 

using the GPIB interface and Labview software for precise testing. 
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Figure 49.  Field Emission Test Chamber. 

 
4.4.2.  Test Procedure 

 The device under test is mounted to a test structure with spring compression using 

copper wires.  These also provide the electrical contact for the CNT carpet.  The friction 

contact resistance measured is less than 1 Ω.  The test structure is then loaded into the 

main test chamber via the load lock.  Field emission can only occur in a vacuum so the 

chamber is evacuated to less than 5x10-6 Torr.   

 The total current is measured on both the supply and ground side of the device 

under test, see Figure 50, to detect any potential leakage currents.  A complete test run 

consists of increasing the extraction voltage in 10 V increments, equates to ~0.05 V/µm, 

 
Figure 50.  Diode configuration testing schematic. 
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from zero up to a pre-set voltage.  At each voltage, after a user defined pause (default is 4 

sec) for the system to reach a steady state, 100 measurements are taken at 0.01 sec 

intervals and averaged before proceeding to the next voltage increment.  After reaching 

the pre-set voltage, the process is reversed and measurements are taken as the voltage 

steps back down to zero.  The initial pre-set voltage is 700 V or ~3 V/µm.  However, if at 

any point during the test damage occurs to the CNTs, determined by visual arching at the 

CNT carpet or by sudden current spikes, the test is immediately terminated and the 

highest voltage measured is recorded as the maximum for the device under test.  If a 

device is tested to 700 V with little or no field emission measured, the set voltage is 

increased for further testing.  The system maximum voltage is 5000 V or ~23 V/µm.  The 

highest electric field applied for this effort was 5.34 V/µm.  Increasing the electric field 

strength too far damages the CNTs and causes permanent degradation in field emission 

performance. 

 The collected field emission data displayed in Figure 51 visually identifies the 

 
Figure 51.  Field emission current density plot for selected samples. 

 

Ti25-Fe10 
Ti25-C20-Fe10 
Ti25-C20-Fe2 
Cr100-C20-Fe10 
Cr25-C20-Fe10 
Cr25-C20-Fe2 
Cr25-Fe10 
PECVD1 
PECVD2 
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strong field emission performers.  The measurements are collected as current and 

matching voltage.  The total field emission area is determined by measuring the sample 

area under the collector plate during the field emission tests using a set of precision 

callipers.  The electric field is calculated simply by dividing the applied voltage by the 

distance, d, between the device under test and the collector plate (d = 215 µm).  The field 

emission vs electric field plot should be an exponentially increasing curve if field 

emission is the current source.  All of the samples shown in Figure 51 demonstrate this 

exponential trait.   

 The Ti25/Fe10 sample identified in Section 4.3 as the best overall CNT carpet 

sample clearly stands out as the best performer.  The field emission test results are used 

to determine field emission properties or metrics for each sample.  The turn-on electric 

field is the electric field strength required for a sample to reach a current density of 

10 µA/cm2.  As described above, the maximum current density achieved without 

damaging the CNT carpet and the corresponding electric field was also collected.  The 

raw current vs voltage data was used to create Fowler-Nordheim Plots, ln(I/V2) versus 

1/V, for each sample as derived in Section 2.7.1.  A linear Fowler-Nordheim plot is 

indicative of field emission.  The Fowler-Nordheim plots for selected samples are 

contained in Figure 52.  Least squares linear regression was used to determine the slope, 

m, of the linear plots so the field enhancement factor, β, could be calculated using 

Equation (18). 

m
bd 2

3

ϕβ =  (18) 
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Where b = 6.83 x 107 eV-3/2Vcm-1, d = 2.15x10-4 cm, and φ = 4.65 eV.  All the field 

emission metrics are listed for each processed barrier/catalyst combination in Table 5. 

 
Figure 52.  Fowler-Nordheim plot for selected samples. 

 
 

Table 5.  Field emission data for all combinations of barrier/catalyst samples. 

Barrier Layer Type & 
Thickness (nm) 

Catalyst 
(nm) Beta 

Turn-on 
E-field 
(V/µm) 

Max Current 
Density 

(mA/cm2) 

Max     
E-field 
(V/µm) 

Chrome 

100 13 4660 2.56 0.13 3.72 
100 2 No CNT Growth 
25 10 3110 2.37 3.52 4.65 
25 2 3630 2.60 0.34 4.19 

Chrome & 
Carbon 

100 & 20 10 4870 1.63 12.30 4.14 
100 & 20 2 No CNT Growth 
25 & 20 10 5430 1.72 8.71 4.65 
25 & 20 2 4150 1.91 2.05 3.72 

Titanium 

100 10 6780 1.86 0.30 3.26 
100 2 3130 2.56 3.99 5.12 
25 10 8640 0.74 13.34 1.40 
25 2 8020 1.02 9.25 2.37 

Titanium & 
Carbon 

25 & 20 10 6070 1.63 12.94 2.33 
25 & 20 2 6130 1.21 2.63 2.33 

MPE-CVD #1 Ti 20 Ni 10 2390 3.16 0.82 5.34 
MPE-CVD #2 Ti 20 Ni 10 3460 2.56 0.95 4.56 
 

Ti25-Fe10 
Ti25-C20-Fe10 
Ti25-C20-Fe2 
Cr100-C20-Fe10 
Cr25-C20-Fe10 
Cr25-C20-Fe2 
Cr25-Fe10 
PECVD1 
PECVD2 
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 As mentioned above, the Ti25/Fe10 sample immediately jumps out as the best field 

emission source with the highest β, lowest turn-on electric field, and the highest total 

current density with the lowest electric field.  Excellent field emission from the CNT 

carpet with the best qualities is a reassuring result.  However, the improvement in field 

emission from adding the carbon buffer to the chrome barrier is astounding.  The 

Cr100/Fe13 sample had extremely large diameter CNTs to the point of being considered 

carbon fiber more than carbon nanotubes.  The field emission from these samples was 

also poor with a total current density of only 0.13 mA/cm2.   

 The Cr100/C20/Fe10 sample on the other hand demonstrated a 30% reduction in 

turn-on voltage and a 100x increase in maximum current density.  The same is true for 

the 25 nm chrome barrier layers.  While the addition of the carbon buffer did not have a 

significant effect on the characteristics of the CNT carpets showing moderate 

improvement in the Raman shift for the Cr25/C20/Fe2 sample and a moderate 

degradation for the other sample, the improvements to the field emission properties are 

striking.  Both samples saw a 20% reduction in turn-on electric field strength, 2.5x and 6x 

increases in maximum current density, and corresponding increases in the field 

enhancement factor.  The carbon buffer layer clearly has a positive interaction with the 

chrome barrier that enhances field emission.   

 Much like the results on the CNT characteristics, the carbon buffer on the 25 nm 

titanium barrier layer degraded the field emission properties to include lower field 

enhancement factors, higher turn-on electric fields, and lower maximum current 

densities.  The maximum current density between the Ti25/Fe2 and Ti25/C20/Fe2 
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samples decreases from 9.25 mA/cm2 to 2.63 mA/cm2 at essentially the same electric 

field strength.  As clearly as the carbon buffer improved the field emission properties of 

the chrome barrier samples, it degraded the field emission properties of the titanium 

barrier samples. 

 Field emission from the MPE-CVD samples does not compare well with the T-

CVD samples.  The MPE-CVD carbon nanotubes have a much higher areal density and 

are much shorter in length at 2 µm.  Both of these factors increase screening effects 

reducing field emission.  However, as mentioned above, the controlled growth using 

MPE-CVD makes patterned and gated or triode configured field emission devices more 

feasible. 

4.5.  Summary 

 In this phase of a continuing research effort to develop CNT field emission devices, 

a study of the effects of Fe catalyst layers deposited on Ti and Cr diffusion barriers has 

been used to determine an optimum combination for effective field emission from CNTs 

produced via T-CVD and compared with a similar study for MPE-CVD.  As expected, 

thicker catalyst layers resulted in larger nano-particles after the anneal or pretreatment 

granulation process causing more amorphous carbon deposits as shown in SEM images.  

Raman spectroscopy was used to characterize the quality of the CNTs.  The G’/G ratio 

was calculated as another possible metric that could relate Raman shift characteristics to 

field emission.  Since no relationship was evident and there is no evidence that the G’/G 

ratio is helpful in determining CNT quality, the G’/G ratio was determined to be an 

unnecessary calculation for future endeavors.   
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 This study showed that sputtered Fe catalyst films on thin barrier layers (25 nm) of 

Ti facilitate excellent CNT growth by T-CVD with superior CNT field emission 

properties, specifically, lower turn-on electric fields and much higher field emission 

current densities than any other combination of barrier and catalyst via either growth 

method.  There was not a clear correlation between CNT quality as determined by Raman 

spectroscopy and CNT field emission.  This is attributed to the effects CNT areal density 

has on field emission.  When the areal density is extremely high, such as with the CNT 

carpets grown by MPE-CVD, screening effects impede field emission.  When the CNT 

growth is sparse, the lack of field emission sources or CNTs impedes field emission.  The 

best field emission was achieved by the Ti-25/Fe-100 sample which had both good 

Raman shift characteristics and qualitatively good or medium areal density. 

 The addition of a carbon buffer layer between chrome diffusion barriers and the 

catalyst layer showed some potential for improving the quality of CNT growth and 

increased field emission dramatically.  The lack of CNT synthesis with thicker barrier 

layers was attributed to poor or at least different thermal properties of the thicker metallic 

barrier which impeded the granulation process resulting in incomplete separation of the 

catalyst nanoparticles shown through SEM micrographs.  The lack of good quality CNT 

carpet growth from any of the Cr barrier samples, which are often used successfully in 

CNT synthesis, is a result of the significant impact different barrier layers have on the 

granulation and growth processes.  Any changes to the barrier or catalyst will require the 

development of a specific growth recipe. 
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 While the most successful field emission results were achieved with samples 

produced by T-CVD, the MPE-CVD process allows better control and uniformity of the 

CNT lengths.  The shorter length and high areal density of the MPE-CVD CNTs 

increases screening effects is the primary cause of the lower field emission performance.  

However, this same control makes integration into electronic devices possible where the 

less controllable growth of the T-CVD process would potentially fail.  Using the 

controllability of the MPE-CVD process to fabricate gated CNT arrays is discussed in 

detail in Chapter VI. 
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V.  CNT Array Modeling and Simulation 

 

 Since de Heer et al demonstrated the field emission capabilities of carbon 

nanotubes with the fabrication of a small electron gun using multi-walled carbon 

nanotubes, CNTs have been the center of a many field emission research efforts [42].  

The physical and electrical properties of CNTs that are favorable for field emission such 

as narrow diameters, high aspect ratios, high temperature stability, good conductivity, 

and structural strength are documented in Chapter II.  CNT field emission devices are 

created in two configurations, diode and triode, shown in Figure 27.  A triode design is 

preferable to a diode design for arrays primarily because the extraction voltage required 

is much lower due to the proximity of the gate to the CNTs.  A triode design also has the 

potential to reduce screening effects which limit electron emission to a small fraction of 

the CNTs within the extraction electric field.   

 COMSOL finite element analysis software is used to simulate various diode and 

triode CNT array configurations to develop an optimized design for a gated CNT field 

emission array within the currently available fabrication capabilities.  Carbon nanotube 

synthesis technology provides a method to control CNT height and to a minor extent 

areal density.  Standard fabrication processes control the array element shape, 

dimensions, and pitch.  The goal is to obtain high array current densities through 

maximizing the electric field strength at the tips of the CNTs by balancing the array 

element dimensions, pitch, and height.  The effects of CNT separation on the electric 

field intensity are also simulated. 
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5.1.  Carbon Nanotube Array Models 

 As mentioned above, there are a variety of properties that make CNTs well suited 

for field emission applications.  However, field emission occurs primarily due to the 

physical dimensions of CNTs.  Single walled CNTs have diameters from 0.6 nm to 1.4 

nm and multi-walled CNTs can range from 12 nm to more than 100 nm in diameter.  

Both types of CNTs can range from tens of nanometers to microns and even millimeters 

in length resulting in incredible aspect ratios.  The resulting focus of the electric field at 

the tips of the CNTs is often referred to as the electric field enhancement factor.  Previous 

research as summarized by Bonard et al has shown multi-walled CNTs to be more robust 

emitters than single walled CNTs [49].  Multi-walled CNTs are also much easier to 

fabricate reliably, as such only multi-walled CNT dimensions are used in these models.  

While the conductivity of single walled CNTs can be metallic or semiconducting 

depending on the nanotube structure, all multi-walled CNTs are considered metallic 

conductors.  With the physical geometry providing the primary enhancement of the 

electric field, the CNTs are treated as perfect conductors in the models. 

 A simple 2D model of a 1 x 3 element CNT array was used to investigate general 

trends, which were then confirmed with much more computationally complex 3D 

models.  The initial 2D model, shown in Figure 53, was based on a fabrication process 

that consisted of a silicon (Si) substrate with a 200 Å titanium (Ti) diffusion layer 

followed by 100 Å nickel (Ni) catalyst layer.  The nickel was covered with 2 µm of 

silicon dioxide (SiO2) with 0.5 µm chrome gate metal on top.  The array consists of 1 µm 

circular or square elements etched in the gate metal and SiO2 with a 1 µm pitch.  The 
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anode is located directly above and relatively far away (10-50 µm) from the CNT 

emitters so its contribution to the electric field is assumed to be small and uniform in 

nature.  Thus, the anode is not included in the model.   

 
Figure 53.  Basic 2D model of 1 µm x 3 gate array with 1 µm pitch. 

 
 The CNT films grown from the Ni catalyst via microwave plasma enhanced 

chemical vapor deposition result in closely packed CNTs with diameters of a fairly 

dispersive range, 10 - 100 nm.  The process target is an average diameter of 50 nm, which 

is the diameter used in the simulations.  The field enhancement will increase for smaller 

diameter CNTs and decrease for larger diameter CNTs. 

 Perhaps the most obvious approach to increasing the current density of an array is 

to decrease the array pitch.  This will increase the number of elements across the array 

resulting in a higher total array current density.  The effects of decreasing the spacing 

between gate openings was investigated by simulating 2D models with pitches of 3 µm, 

2 µm, 1 µm, and 0.5 µm for both 1 µm and 0.5 µm array elements.  Three dimensional 

simulations were also performed using 3x3 element arrays with 1 µm and 0.5 µm pitches. 

 The proximity of the gate to the CNT directly affects the electric field intensity.  

Thus, it’s expected that decreasing the element dimensions will result in increased field 
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strength.  The trade-off is fewer CNTs within the smaller element.  However, within a 

given element only a fraction of the CNTs are expected to emit at any given time.  This is 

caused by electrostatic screening which is described in detail below.  Experimental 

results with decreasing larger element dimensions from 18 µm to 4 µm have shown 

increased field emission current densities [73].  The smallest feature size available in the 

current fabrication process is 0.5 µm, so the electric field strength of 1 µm and 0.5 µm 

array elements were compared.  3D models were also created to compare the field 

strength of 1 µm and 0.5 µm circular and square elements.  However, it should be noted 

that the processes available for this effort are capable of only 0.5 um circular elements. 

 When de Heer et al first published the results of the first CNT field emission 

device, it was estimated that a mere 0.1 % of the total CNTs were emitting electrons.  It is 

now widely accepted that this phenomenon is caused by electrostatic screening [10].  The 

CNTs are too close together for electrostatic field penetration which negates some of the 

expected field enhancement.  As reported in Section 2.7.2, Nilsson et al conducted a 

study of screening effects for diode configured CNTs by performing 2D simulations of 

field penetration that concluded the optimum separation between individual CNTs was 

twice the CNT height [59].  3D simulations performed by Smith et al showed 2D 

simulations underestimated the effects of screening and determined an optimized 

separation of 3 times the height of the individual CNTs.  Neither of these optimized 

solutions is practical for large gated arrays as it would require e-beam lithography to 

pattern individual CNT growth sites within each element.  Screening effects within the 

elements are unavoidable as the density of the CNTs can only be mildly influenced 
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during the synthesis process.  However, the CNT spacing within an element was 

simulated at 50 nm, 200 nm, and with a single CNT to confirm electrostatic screening 

effects. 

 The limited electrostatic field penetration between densely grown CNTs introduces 

the possibility of improving the fabrication process by reducing the thickness of the 

dielectric layer and the height of the CNTs without any adverse effect on the electric field 

strength.  As the feature sizes decrease; fabrication, especially etching, becomes more 

difficult unless there is a corresponding decrease in layer thicknesses.  The dielectric 

thickness was simulated at 2 µm, 1 µm, and 0.5 µm with the CNT height adjusted 

accordingly.  A dielectric thickness of 0.5 µm is probably not feasible due to the 

difficulty in reliably controlling CNT height below 0.5 µm. 

 Using the models and simulations discussed above, the optimization process can be 

summarized by varying these five parameters: CNT spacing, array pitch, array element 

dimensions, element shape, and dielectric thickness. 

5.2.  COMSOL Multi-physics 

 The COMSOL electrostatics of dielectric materials application was used to simulate 

the electric field generated by the gate extraction voltage across the CNTs within the 

array elements in both 2D and 3D.  The models were created by subtracting the 

conductors (substrate, CNTs, gate) from a surrounding dielectric block of air and silicon 

dioxide.  Subdomain properties were used to set the silicon dioxide permittivity at 3.9.  

Boundary conditions were used to ground the substrate and CNTs and put a 1 V potential 



 

101 

on the gate metal.  Results were best visualized using contour and surface plots, while 

peak electric field magnitudes were recorded using point evaluations. 

5.3.  Simulation Results 

 Previous experimental and computer simulation research with diode configured 

CNTs indicated that relatively large spacing between the CNTs is necessary to avoid 

screening effects.  These electrostatic screening effects are clearly evident in the 

simulation results shown in Figure 54.  This simulation is of a 1 µm element with CNT 

spacing of 50 nm, 200 nm, and a single CNT in the center of the element.  The simulation 

shows the equipotential lines of the electrostatic field with the background surface 

indicating the magnitude of the electric field. 

 
                      (a)                                            (b)                                          (c) 
Figure 54. Screening effects for a) single CNT, b) 200 nm spacing, and c) 50 nm 
spacing. 

 
 The single CNT, shown in Figure 54 (a) clearly sees the most field penetration and 

correspondingly has the strongest electric field.  There is a 42% reduction in electric field 

strength from the single CNT to the center CNT in Figure 54 (b) with neighboring CNTs 

200 nm away.  The magnitude of the electric field of the center CNT in Figure 54 (c) 

with 50 nm spacing is 60% less than the single CNT.  The CNT spacing within each 
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element cannot be controlled precisely, so the electrostatic screening within each gate is 

unavoidable at this time. 

 Decreasing the array pitch poses the simplest method to increase the total current 

density of the array, as long as the reduced pitch does not cause screening effects between 

array elements.  Results of array pitch simulations where the pitch of 1 µm and 0.5 µm 

element arrays were reduced from 3 µm to 0.5 µm are shown in Figure 55.  The 

magnitude of the E-field at the tip of each CNT at each pitch is plotted.  There is no 

reduction in magnitude across the center of each array element where the screening 

effects of immediately neighboring CNTs dominate.  The 0.5 µm pitch causes a small 

reduction (~4%) in the E-field magnitude of the edge CNTs.   

 
Figure 55.  E-field magnitude at CNT tips of 1 µm and 0.5 µm element arrays 
with varying pitches. 

 
 3D simulations of a 3x3 0.5 µm element array with 1 µm and 0.5 µm pitches 

yielded similar results. Figure 56 shows the 3D model and the resulting E-field 
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magnitudes at the CNT tips of the center element.  The scales are identical for both 

surface plots and show no discernable difference between the two pitches.  Quantitative 

analysis across the entire array resulted in only a 2 % difference between the two arrays.  

Reducing the array pitch has little effect on the magnitude of the electric fields generated 

across each element; while the increased number of elements will result in larger total 

array current densities.  

 
                    (a)                                            (b)                                          (b) 
Figure 56.  (a) 3x3 0.5  µm  gated array with cross-section of E-field magnitude at 
CNT tips of the center element for (b) 0.5  µm  and (c) 1  µm  pitch. 

 
 Reducing the array element dimensions has the potential to increase over all array 

current density in two ways.  First, smaller elements will increase the total number of 

elements across the array.  Second, as shown in Figure 55, the decreased distance 

between the CNT emitters and the gate increases the electric field.  The center CNT 

electric field magnitude increases almost two fold from 3.3 V/µm to 6.1 V/µm with the 

reduction in element dimension from 1 µm to 0.5 µm. 

 Three dimensional simulation results comparing elements of 1 µm and 0.5 µm 

showed greater increases in electric field strength.  The E-field magnitude at the CNT tips 

shown in Figure 57 clearly shows an increase for both circular and square elements when 

the element dimension is reduced.  The center CNTs of the 1 µm circular and square 
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elements have E-field magnitudes of 5.3 V/µm and 7.8 V/µm respectively.  The center 

CNTs for the 0.5 µm circular and square elements increases to 14.7 V/µm and 17.7 V/µm 

respectively.  Both 3D and 2D results confirm an increase in the electric field across the 

element with decreasing element dimensions. 

 
Figure 57.  Cross-section of E-field magnitude at CNT tips of (a) 1 µm circular, 
(b) 0.5 µm circular, (c) 1 µm square, and (d) 0.5 µm square single elements. 

 
 These simulations also provided a comparison between square and round element 

shapes.  It is interesting to note that in all cases, shown in Figure 57, the center CNT of 

the square element has a slightly higher E-field.  In order to compare similar CNTs across 

both square and circular elements, CNTs were compared along the red lines in Figure 58.  

Both the 1 µm and 0.5 µm elements did not indicate a general increase in electric field 

strength.  However, the square element has more CNTs with as strong and in the center 

slightly stronger electric fields than the circular element.  Along the outer edge of the 

5.3 V/µm 

7.8 V/µm 

14.7 V/µm 

17.7 V/µm 
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element it could be argued that the CNTs in the square element are closer to the gate and 

will have a stronger electric field due to this proximity.  By this same argument, the 

CNTs in the center of the square element are further from the gate than in the round 

element and the CNTs in the square element have more surrounding CNTs causing 

greater screening effects, so the center CNTs of the square element should have a lower 

field strength than the round element.  Instead, there is a 38% difference between the 

1 µm square and circular elements and a 9% difference for the 0.5 µm elements with the 

square element having the stronger electric field in both cases.  This indicates that a 

square element is a better shape for the same feature size.  Unfortunately, the fabrication 

processes currently available at the 0.5 µm feature size is limited to circular elements. 

 
                          (a)                                        (b) 
Figure 58.  Method for comparing similar CNTs of circular 
and square elements. 

 
 Fabrication of small feature sizes, such as 0.5 µm elements with 0.5 µm pitch can 

be daunting when it requires etching through 2 µm of dielectric material.  The last set of 

simulations compares the electric field across the 0.5 µm elements with 0.5 µm pitch 

when the SiO2 dielectric layer is 2 µm, 1 µm, and 0.5 µm.  The height of the CNTs is 

adjusted accordingly as well.  Figure 55 shows a small reduction in the outside electric 

field strength at the 0.5 µm pitch due to element to element screening effects.  After 
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accounting for this slight reduction, results of 2D simulations in Figure 59 show no 

electric field degradation regardless of the SiO2 thickness. 

 
Figure 59.  E-field magnitude at CNT tips across 2D element for 
dielectric thicknesses of 0.5 µm, 1 µm, and 2 µm. 

 
 Corresponding 3D simulations of 3x3 arrays with 0.5 µm circular elements and 

0.5 µm pitch are shown in Figure 60.  Figure 60 (a) is the results for the 0.5 µm dielectric 

thickness and shows a slight decrease in the electric field from the other two cases.  The 

magnitude at the center is ~10 % less with the edges decreasing by smaller amounts.  

There is virtually no difference between the 1 µm and 2 µm dielectric thickness results.  

Reducing the dielectric thickness to improve fabrication reliability should not degrade the 

field emission properties of the resulting arrays. 
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                  (a)                                            (b)                                             (c) 
Figure 60.  Cross-section of E-field magnitude at CNT tips of the center element of 
3x3 array with SiO2 thickness of (a) 0.5 µm, (b) 1 µm, and (c) 2 µm. 

 
5.4.  Summary 

 Carbon nanotubes have unique physical and electrical properties making them 

exceptional field emitters.  COMSOL multi-physics has been used to optimize the 

physical dimensions for CNT field emission arrays.  Five relatively simple parametric 

studies were performed to provide important insights into the design of field emission 

arrays within fabrication capabilities.   

 First and foremost, these simulations have shown that the electrostatic screening 

between CNTs within an array element is the dominating factor of the electric field 

magnitude.  Any adjustments to the CNT synthesis process that can increase the carbon 

nanotube spacing will increase the electrostatic field penetration between CNTs and 

increase the local electric field magnitude.  The screening effect is so dominant within the 

array elements that the pitch can be reduced significantly without adversely affecting the 

electric field magnitude at the CNT tips.  Reducing the pitch will increase total array 

current density by increasing the total number of array elements.  The same principle 

applies to the element dimensions.  Reducing the element dimensions results in stronger 

electric fields and increases the total number of elements, both of which will increase 
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overall current density.  The simulation results of element shape showed that a square 

element will potentially provide a better array fill factor without degrading the electric 

field strength; making it a better choice over a circular element of the same diameter.  

Finally, due to the dominant screening effects, the dielectric layer thickness and CNT 

height can be reduced significantly without decreasing the electric field strength. 

   The resulting optimized CNT field emission array, shown below in Figure 61, that 

fits within current fabrication capabilities available for this research effort consists of a 

0.5 µm circular element array with 0.5 µm pitch.  The SiO2 dielectric layer can be 

reduced to 1 µm with a corresponding CNT height between 0.5 µm and 0.8 µm.  The 

simulation results indicated a square element will perform better than a circular element.  

However, due to limitations of the current fabrication process, a circular element is used 

in the final design. 

 
Figure 61.  Optimized CNT field emission array basic schematic. 
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VI. CNT Field Emission Array Fabrication 

 

 CNT field emission can be achieved with either diode or triode configurations, both 

are shown in Figure 27.  For reasons explained in Sections 2.7 and 5.4, a triode device is 

the preferred configuration.  But, the diode configuration is also used for its simplicity 

and to characterize the field emission properties of CNT carpets avoiding the 

complexities of complete device fabrication.  Field emission using this configuration 

requires relative high voltages to establish the necessary electric fields, due to the 

relatively large distance between cathode and anode.  The diode configuration for this 

research required no fabrication beyond the deposition of the barrier and catalyst layers 

on the substrate followed by CNT synthesis.  The CNT carpet then becomes the cathode 

and the field emission test apparatus places the copper anode above the CNT carpet. 

 Two processes were developed for fabricating triode devices.  The first is a 

conventional photolithographic process, first developed at AFIT by Kossler [63].  The 

photolithographic process is mature and reliable, but limited in feature size to ~1-2 µm.  

The second process utilizes a novel patterning method called nanosphere lithography 

capable of feature sizes in the 10’s of nanometers [75].  For both processes the anode is 

omitted, the ability to flip-chip bond the anode to the device has been demonstrated but 

was not required for the desired application and for test purposes the test apparatus 

supplied the anode.  Detailed descriptions and the resulting devices are described in detail 

below. 
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6.1.  Photolithography Process 

 A triode based field emission array test device was designed and all processing 

steps completed except aligned CNT growth.  The gate masks for the photolithographic 

fabricated test devices consisted of an array area of 1 cm2 with large 0.5 cm2 contact 

areas for both the gate metal and catalyst/barrier metal.  The array elements consisted of 

circles or squares with dimensions of 2, 4, 8, or 16 µm with element pitch also ranging 

from 2 to 16 µm.  The varying element shapes, dimensions, and pitches were designed to 

facilitate an experimental parametric study similar to the COMSOL simulations 

previously described.  

 The fabrication process is shown in Figure 62.  The triode based device is fabricated 

on silicon by first depositing a titanium barrier layer of 200 Å followed by the Ni catalyst 

layer (50 – 200 Å) via DC magnetron sputtering.  The dielectric is sputtered SiO2, 1-2 µm 

thick with the final gate metal of 1000 Å of chrome.  The final prepared substrate with all 

layers deposited is represented in Figure 62 (a).  After all materials are deposited, the gate 

 
Figure 62.  CNT field emission device photolithographic fabrication process. 
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mask is used to pattern and etch the chrome layer as shown in Figure 62 (b).  The chrome 

and photoresist act as a mask and the nickel catalyst layer acts as an etch stop for the 

reactive ion etching (RIE) process that removes the SiO2, see Figure 62 (c).  The final 

step for a complete device, shown in Figure 62 (d), is CNT growth which is detailed in 

Chapter III.  Figure 63 provides images of a completed triode device at increasing 

magnifications. 

 
Figure 63.  Triode device fabricated by photolithographic process. 

 

6.2.  Nanosphere Lithography 

 Nanosphere lithography was used to fabricate a CNT field emission array matching 

the physical dimensions of the optimized design from the parametric study simulations.  

A schematic of the optimized array is shown in Figure 61 with the physical dimensions 

labeled.  The concept of nanosphere lithography was introduced in Chapter II with the 
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discussion on depositing a monolayer of nanospheres across a substrate.  In the 

application discussed the polystyrene nanospheres were used as a mask to deposit 

nanoparticles of Ni catalyst for sparse CNT growth.  This same nanosphere lithography 

process is applied but the nanospheres are used as a mask for the array elements for the 

optimized triode device.  This novel masking method was chosen as an inexpensive, 

simple process for achieving the 0.5 µm gate elements and pitch desired with the 

potential for much smaller dimensions in the future. 

 The concept for nanosphere lithography was first proposed by Fischer and 

Zingsheim in 1981 when they used 312 nm latex spheres to achieve contact imaging with 

submicroscopic resolution [76].  Shortly thereafter, Deckman and Dunsmuir 

demonstrated the use of polystyrene nanospheres as an etching or deposition mask which 

they dubbed natural lithography [77].  Haginoya et al furthered the development of 

nanosphere lithography by investigating the effects of oxygen RIE on a Polystyrene (PS) 

monolayer.  The RIE process effectively etched the PS allowing the diameter to be 

accurately adjusted.  The following relationship between the desired diameter, d, and the 

RIE time, t, was approximated [78]. 

1
0

0

cos cos
2
ktd d
d

−   =   
   

 (19) 

  
Where d0 is the initial colloid diameter and k is a process specific constant that must be 

determined through experimentation.  The relationship shows that as the diameter 

decreases the polystyrene etch rate increases significantly.  Since these early efforts, 

monolayers and dual layers of PS nanospheres combined with angled deposition of 
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subsequent materials have been used to fabricate complex periodic arrays for a number of 

potential applications from nanoscale optics to magnetic memory [79]. 

 Nanosphere lithography has well documented issues stemming from the fact that 

the monolayer is a “naturally” forming 2-D crystal.  The first issue is depositing the 

polystyrene colloids in a manner conducive to self-assembly or natural formation.  The 

second is the unavoidable defects that occur during self-assembly such as point defects or 

vacancies, line defects, and polycrystalline domains [79].  Figure 64 shows a relatively 

large area of a 1 µm sphere monolayer.  The defects are easily identified in SEM images 

because of reflection at defect edges resulting in bright lines in the monolayer structure. 

 
Figure 64.  SEM image of 1 µm sphere monolayer.  
Bright lines indicate 2D crystalline defects. 

 
 There are two primary methods of depositing nanospheres, spin coating and drop 

coating.  Spin coating utilizes a typical photoresist spinner and PS nanospheres 

suspended in water or a water and isopropyl alcohol mixture.  Self-assembly will only 

occur if the polystyrene mixture wets to the substrate surface; so a hydrophilic surface is 

required.  The addition of isopropyl alcohol helps the solution wet to the surface and 

increases evaporation which decreases the spin time required to dry the substrate after 
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application.  Drop coating consists of submersing the hydrophilic substrate into water at a 

slight angle then adding a solution of PS nanospheres, water, isopropyl alcohol or 

methanol.  The nanospheres form a monolayer on the surface of the water.  At this point 

self-assembly will occur and can be enhanced by decreasing the surface tension of the 

water with the addition of a surfactant [39].  The actual deposition of the monolayer is 

accomplished by letting the water evaporate, lifting the substrate out of the water, or 

draining the water from the container.  Whichever method is selected, it must be 

performed in a manner that does not disturb the delicate monolayer suspended on the 

surface of the water.  The more complex drop coating processes usually result in larger 

defect free areas, but regardless of the method used defect free areas of more than 100 

µm2 are rare [79]. 

 The PS is easily removed with either wet or dry etching processes.  Solvents like 

toluene and acetone are effective wet etchants for polystyrene.  Wet etchants are typically 

coupled with an ultrasonic bath to prevent any dissolved PS residue or deposited material 

intended for lift-off from remaining on the substrate.  Oxygen RIE has already been 

mentioned as a dry etchant for PS.  It is also possible to remove PS with an oxygen 

plasma ash.  Using the nanosphere lithography processes described above a complete 

fabrication process for a sub-micron gated CNT field emission array was developed.  

6.2.1.  Fabrication Process 

 The fabrication process as shown in Figure 65 will focus on the nanosphere 

lithography aspects.  A brief description of the necessary process steps leading up to 

Figure 65 (a) follows.  A silicon substrate is prepared by first sputtering a 200 Å titanium 
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thin film to aid in adhesion and act as a diffusion barrier.  Next a 100 Å Ni thin film is 

sputtered to act as the CNT catalyst.  This is followed by 1 µm of SiO2 which provides 

the necessary dielectric separation between the gate metal and the CNTs. 

 
Figure 65. Complete device fabrication process; a) PS mask deposit on prepared 
substrate; b) Plasma ash or RIE to reduce PS size; c) deposition of gate metal via 
evaporation; d) removal of PS mask with ultrasonic acetone bath; e) RIE to remove 
SiO2; f) MPE-CVD growth of CNTs.  

 
 The two key steps in this process are getting the PS monolayer deposited across the 

dielectric layer, both drop coating and spin coating methods were used.  And the etch 

method employed to reduce the size of the individual PS colloids; again both plasma 

ashing and RIE were used.  Thus, essentially two fabrication processes were developed 

one utilizing drop coating and plasma ashing and a second consisting of spin coating and 

reactive ion etching. 
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6.2.1.1. Drop Coating Process 

 The first drop coating process consisted of mixing the nanosphere solution 1:1 with 

isopropyl alcohol.  The nanospheres are 10 % solid in a water solution.  Using a small 

pipette the nanosphere/water/isopropyl solution is dropped on the SiO2 layer.  The 

surface must be hydrophilic for the solution to wet to it and the monolayer to form.  SiO2 

should naturally be hydrophilic, but a short plasma ash is performed to both clean the 

wafer and ensure the surface is hydrophilic.  The wafer must be resting at a slight angle 

(20º - 40º) with one edge submerged in DI water.  The solution must be added right 

where the DI water meets the Si wafer.  The isopropyl alcohol causes rapid evaporation 

and helps both keep the nanoshperes on the DI water surface forming a monolayer and 

facilitates evaporation and capillary action which draws the nanoshpere monolayer up the 

Si wafer.  The resulting film is then allowed to air dry.  The process is fairly crude and 

only works a small fraction of the times attempted.  However, the actual deposition either 

works and the total process occurs in less than 1 minute or it doesn't work and the wafer 

can be cleaned by rinsing in DI water.  Then the process can be attempted again in less 

than 1 minute.  Although not attempted for this effort, it has been reported that the 

addition of small amounts of sodium dodecyl sulfate, a common surfactant, improves 

both the deposition success rate and the self-assembled monolayer quality [39].  The 

sodium dodecyl sulfate, a common ingredient in dish soaps, reduces the surface tension 

of the water allowing larger defect free monolayers to form. 

 The drop coating deposition and plasma etching of 1 µm spheres was accomplished 

with mixed results.  The deposition process resulted in large wafer areas being coated 
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with a monolayer but the defect density was very high.  Figure 66 (a) shows a very good 

close up of a virtually defect free area, while Figure 66 (b) shows the many defects and 

breaks in the monolayer after zooming out only four times.  Large areas 2 - 5 cm2 were 

covered with the 1 µm sphere monolayer, but a defect free area of 20 µm2 or larger could 

not be found.   

 The 1 µm diameter spheres were etched in the oxygen plasma asher at 100 W for 

20 min.  The goal was a reduction in diameter from 1 µm to 500 nm.  Figure 67 (a) shows 

that the etch was too much reducing the spheres to approximately 400 nm.  The 

expectation was that van der Waals forces would hold the spheres to the substrate, so that 

a uniform distribution would be maintained.  Figure 67 (b) shows a few spheres, like 

those in the lower left corner, that still seem to be ordered.  The vast majority of the 

spheres look randomly distributed with many apparently sticking to each other better than 

to the substrate.  Efforts to improve on the quality of the PS monolayers using this 

relatively crude drop coating method were not productive, so only the more promising 

spin coating method was continued. 

 
                             (a)                                                                    (b) 
Figure 66.  SEM images of 1 um sphere monolayer a) close up on defect free 
area and b) large area showing high defect density. 

 

5 µm 20 µm 
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6.2.1.2. Spin Coating Process 

 This particular application does not require a defect free 2-D crystal lattice as a 

defect will only slightly increase the area of the gate metal.  However, the defect density 

of the drop coating method described above was unacceptable.  Thus, the simpler and 

significantly faster spin coating method was selected as the deposition method of choice.  

Spin coating allows quick application of the PS solution and if the result is poor, the 

sample can be cleaned and the solution reapplied while remaining on the spinner.   

 The spin coating process used begins with substrate preparation.  The silicon 

dioxide surface of the substrate is thoroughly cleaned using an acetone, methanol, DI 

water rinse.  The substrate is then cleaned and made hydrophilic with a 5 minute oxygen 

plasma ash at 75 W.  The PS nanospheres (10 wt. %) are packaged suspended in DI 

water.  The PS/DI solution is mixed in equal parts (1:1) with isopropyl alcohol.  A small 

amount of solution is applied to the prepared substrate via pipette and the spin process is 

started.  The spin process consists of a spreading speed of 400 to 800 rpm for 40 seconds 

followed by a gradual increase over 30 seconds to 2000 rpm until dry (60-70 sec). 

 
                                 (a)                                                              (b) 
Figure 67.  SEM images of oxygen plasma etched 1 µm spheres a) close up and 
b) zoomed out to larger area. 

 

500 nm 5 µm 
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 Figure 65 (b) shows the PS nanospheres being reduced by oxygen plasma ashing or 

oxygen RIE.  Plasma ashing is effective at etching PS and was initially chosen over RIE 

due to laboratory availability.  The plasma ash was performed at 25 W for 7 min to 

reduce 1 µm diameter PS to 500 nm, 5 min to reduce 760 nm diameter PS to 500 nm, and 

3 min to reduce 500 nm diameter PS to 250 nm. 

 The process step shown in Figure 65 (c) is the deposition of the gate metal.  The 

gate metal is 1200 Å of chrome.  The gate metal is deposited by e-beam evaporation 

without rotation to facilitate the lift-off step.  Removal of the PS mask and gate metal lift-

off is accomplished with an ultrasonic acetone bath for 8 minutes followed by an acetone-

methanol-DI water clean.  The result of the lift off is represented by Figure 65 (d). 

 Next the gate metal forms a mask for the SiO2 etch shown in Figure 65 (e).  The 

1 µm of SiO2 is etched by RIE at 90 W for 20 minutes.  This exposes the Ni catalyst 

layer, which also acts as an etch stop for the RIE process.  Finally, the device is 

completed with the growth of carbon nanotubes from the Ni catalyst as shown in Figure 

65 (f). 

6.2.1.3. Spin Coating Results 

 As mentioned above, the difficult part of nanosphere lithography is the deposition.  

Developing an effective spin coat process required extensive experimentation.  The final 

spin coating process yielded acceptable results.  The difference in spreading speed 

required is dependent on the sample size.  Successful application was repeatedly achieved 

for 1.5-2 cm2 samples with a spreading speed of 400 rpm, but for smaller samples 1 cm2 

or less it was necessary to increase the spreading speed.  Deckman and Dunsmuir also 
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used spin coating and noted that PS nanospheres between 300 nm and 800 nm were more 

successful with spin coating than larger or smaller diameters [77].  Although their process 

was different, the results were similar.  The deposition of 760 nm and 500 nm 

nanospheres had better coverage and fewer defects than the 1 um nanospheres.  An 

attempt to deposit 100 nm nanospheres using the above process was completely 

unsuccessful resulting in a multilayer film across the sample.  This is most likely because 

the Van Der Waals forces between these small PS colloids are significant.  A surfactant, 

as mentioned above, could be used to improve the process for smaller diameter PS 

nanospheres. 

 The spin coating process developed was used successfully to mask samples from 1 

– 2 cm2 with PS nanospheres 1 µm, 760 nm, and 500 nm in diameter.  Figure 68 shows a 

relatively defect free area of a monolayer of 500 nm diameter nanospheres.  Even though 

there are clearly many line dislocation and polycrystalline boundary defects this 

monolayer is acceptable for the current application. 

 
Figure 68.  Monolayer of 500 nm diameter PS spheres self-
assembled into 2-D crystal lattice by spin coating. 

 

5 µm 
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 The oxygen plasma asher was effective at etching the PS nanospheres and after 

backing out a processing constant k of 3.9 using Equation (19), the etch rates matched the 

approximate relationship developed by Haginoya et al.  One issue with using a plasma 

ash for diameter control is a PS bridge phenomenon where neighboring spheres seem to 

be connected by a melted PS bridge stretching between them.  This phenomenon is not 

uncommon and has been exploited to create novel masking effects [81].  Reducing the 

power of the plasma ash from 75 W to 25 W reduced the phenomenon, but did not 

eliminate it entirely.  Figure 69 (a) shows 1 µm PS nanospheres after plasma ashing with 

a resulting diameter of 500 nm.  The bridge phenomenon can be seen in several places in 

the SEM micrograph.  A bigger issue occurred with the plasma ashing of the 500 nm PS 

which may be related to the PS bridging.  The 500 nm PS appear to adhere to each other 

better than they adhere to the substrate resulting in small groups of three and four etched 

PS nanospheres as shown in Figure 69 (b).  With the exception of the bridge 

phenomenon, the plasma asher worked for both 1 um and 760 nm PS, but is most likely 

an unacceptable etch process for the 500 nm PS.  Using RIE Haginoya et al were able to 

etch 200 nm PS nanospheres down to 82 nm while still maintaining the original periodic 

spacing [78].  Oxygen RIE proved to be much more reliable with more repeatable results 

than plasma ashing.  Figure 69 (c) shows 1 µm PS after 3 min and 30 sec RIE at 90 W 

with no evidence of the bridge phenomenon and the process was much less dependent 

upon the placement of the specimen in the system than with the plasma asher. 
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                                     (a)                                                                (b) 

 
                                     (c)                                                                (d) 
Figure 69.  a) 1 µm PS nanospheres after plasma ashing; b) 500 nm PS 
nanospheres after plasma ashing; (c) 1 µm PS nanospheres after RIE; (d) 1 µm 
PS nanosphere with 120 nm Cr cap. 

 
 The curvature of the nanosphere coupled with the straight-on non-uniform 

deposition properties of evaporation result in a cap of Cr on top of the colloids that is not 

connected to the Cr layer on the substrate.  This Cr cap effect, shown clearly in Figure 69 

(d), facilitates an acetone lift-off of the Cr.  The gate metal thickness is limited by the size 

of the PS colloids after etching.  As a general rule the gate metal must be less than 1/4th 

of the colloid diameter after etching.  In this case, the colloids were initially 1 µm in 

diameter, after etching the colloids were reduced to 500 nm.  The undercut curvature of 

the colloids nominally begins half-way up the colloid or at 250 nm.  In order to ensure a 

gap between the Cr cap and the Cr deposited on the substrate, 120 nm of Cr was 

2 µm 500 nm 

5 µm 500 nm 

Bridge Effect 
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deposited nominally leaving a 130 nm gap.  Figure 69 (d) shows that the actual gap is 

closer to 100 nm or less. In some instances the gap was bridged by the Cr preventing lift-

off and resulting in the Cr cap remaining, see Figure 70 (a).  The removal of the PS mask 

and excess gate metal is accomplished with acetone, which dissolves the PS, in an 

ultrasonic bath.  The lift-off is followed immediately with an acetone-methanol-DI water 

rinse to clean the sample.  Efforts of removal using only an acetone bath and a cotton 

swab resulted in large amounts of metal debris from the dissolved PS coating the sample 

surface.  Even with the ultrasonic bath and subsequent rinse there is still some debris 

present, but the sample surfaces are much improved.  Figure 70 (a) shows a sample after 

ultrasonic acetone bath and cleaning rinse.  The lift-off process has proven adequate 

when combined with the ultrasonic bath. 

   
                                (a)                                                                   (b) 

Figure 70.  (a) 500 nm gate mask after PS release; (b) 500 nm gate after RIE. 
 

 The RIE of silicon dioxide through the gate mask is a mature process from previous 

fabrication efforts and worked well as shown in Figure 70 (b).  A profilometer was used 

to confirm the etch depth on a larger gate metal opening for test purposes.  The same 

opening was used to test for the presence of the Ni catalyst using conductivity 

measurements.  Subsequent growth of CNTs also confirmed the presence of the Ni 

5 µm 1 µm 
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catalyst.  Figure 71 shows a single gate opening with CNTs grown in the MPE-CVD 

system using the recipe described previously.  The growth time was 2 minutes and the 

CNTs are much too tall, reaching and extending beyond the gate metal.  The CNTs are 

also not well aligned, but CNTs can emit electrons from the side walls as easily as the 

tips.  Thus, vertically aligned CNTs are desirable for emission enhancement and 

efficiency but are not required for field emission. 

6.2.1.4. Nanosphere Lithography Process Summary 

 A complete fabrication process using nanosphere lithography to fabricate the 

optimized sub-micron gated CNT field emission array has been described and each step 

in the process demonstrated successfully.  Nanosphere lithography provides an 

inexpensive, simple method of achieving sub-micron gate features.  There are 

unavoidable problems with nanosphere lithography chiefly monolayer deposition 

difficulties and monolayer defects.  This form of lithography may not be feasible for 

large scale automated fabrication, but it provides an excellent method for proof of 

 
Figure 71.  Single array element with CNTs. 

 

300 nm 
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concept research by achieving feature sizes beyond the capabilities of standard 

photolithography.   

 Steps in the nanosphere lithography process that should be improved were 

highlighted.  The spin coating deposition method is simple and fast but not effective for 

smaller diameter PS nanospheres.  For PS with diameters below 300 nm, a reliable drop 

coating method is necessary.  Oxygen plasma ashing can be used to etch PS nanospheres, 

but oxygen RIE proved to be a more repeatable process.  The current fabrication process 

was adequate for the production of the designed 500 nm gated CNT field emission array.  

There is also potential for significantly smaller gate openings, even to the point of 

limiting CNT growth to a single CNT per element. 

6.3.  Field Emission  

 Unfortunately, due to fabrication errors the devices were not capable of triode 

operation.  Figure 71 shows that the CNTs are clearly too long and have extended beyond 

the gate metal.  Resistance measurements confirmed a low resistance short between the 

substrate and gate.  The devices were still capable of field emission in a diode 

configuration.  Instead of assessing the performance of gated field emission devices, the 

screening effects of a grounded gate structure were studied. 

 Three working devices were compared.  The first was an un-patterned CNT carpet.  

The second was the gated device in Figure 63.  This device consists of a 1 cm2 array of 

4 µm round elements with a 4 µm pitch.  This device also had a low resistance short 

between the substrate and gate metal after fabrication.  The third device was the 500 nm 
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gated device fabricated using nanosphere lithography shown in Figure 71.  Carbon 

nanotubes for all three devices were grown via MPE-CVD. 

 Device testing was conducted according to the test procedures explained in Section 

4.4.2.  The field emission test data is displayed in Figure 72 with the 10 µA/cm2 turn-on 

current density marked.  The turn-on electric field for each device was 2.1 V/µm for the 

4 µm gated device, 2.47 V/µm for the CNT carpet, and 2.84 V/µm for the 500 nm gated 

device.  The peak current density for the CNT carpet and 500 nm gated device can be 

seen in Figure 72 at 147 µA/cm2 and 112 µA/cm2 respectively.  The 4 µm gated device 

had a peak current density of 267 µA/cm2. 

 
Figure 72.  Field emission test of gated devices. 

 
 The 4 µm gated device performed the best out of the three devices with a lower 

turn-on electric field and higher maximum current density.  The better performance can 

be ascribed in some part to a reduction in screening effects between the array elements 

caused by the grounded gate structure.  The 500 nm gated device performs the worst for a 
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couple of reasons.  Screening effects maybe the biggest cause of poor performance.  The 

500 nm elements are small enough that the grounded gate is most likely screening the 

entire element reducing the field enhancement effect of the few CNTs within each 

element.  A second reason for the poor performance might be a result of the limited 

number of CNTs per element across the array. 

6.4.  Summary 

 This chapter tied the various aspects of this research effort together to fabricate 

gated field emission devices.  The MPE-CVD synthesis method was used for CNT 

growth.  Gated devices were fabricated using both conventional photolithography and a 

novel nanosphere lithography process.  The nanosphere lithography process provided an 

inexpensive method to achieve the sub-micron features required for the optimized device 

design developed in Chapter V.  All fabrication steps for the gated arrays were 

demonstrated and prototype devices fabricated and tested.  Although, not fully 

functioning triode devices, the devices tested provided valuable insight into electrostatic 

screening effects and validated the results of the modeling and simulation that showed a 

reduction in screening effects between elements in an array. 
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VII. Conclusions 

 One of the primary goals of this research effort was to develop a reliable CNT 

synthesis process.  This goal was met with two separate CVD synthesis methods.  The 

first CNT growth process was via MPE-CVD.  Detailed research into the process 

revealed the specificity of a process recipe.  It was shown that changes in barrier and 

catalyst material have significant effects on the growth process, so much so, that even 

changes in the deposition method from sputtering to evaporation of the same barrier and 

catalyst material requires the development of new growth parameters.  A method to 

develop and refine the growth parameters was followed.  First, the catalyst must be 

granulated into nanoparticles to facilitate the nucleation of CNTs.  Once the pretreatment 

or granulation process has been verified by SEM or AFM measurements the growth 

phase can be refined to achieve quality CNT growth.  The MPE-CVD synthesis process 

was refined for sputtered Ni catalyst with a Ti barrier and a reliable recipe was 

developed.  Vertically aligned CNT growth was not achieved during this research effort. 

 The second CVD synthesis method developed was via thermal CVD.  A similar 

process to that used for the MPE-CVD method was followed to achieve reliable CNT 

growth.  Barriers of Ti and Cr were used with Ni and Fe catalyst of differing thicknesses 

to determine the best combination for CNT growth and field emission performance.  

Again, it was shown that any changes in the barrier or catalyst material change the 

granulation, done by annealing for T-CVD, and growth characteristics.  Ni proved 

ineffective for the T-CVD process used, yielding no CNTs.  Fe with a Ti barrier was 
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determined to be the best catalyst/barrier combination for the current T-CVD process.  

Vertically aligned CNTs were not achieved via T-CVD either.   

 CNT carpet samples from both synthesis methods were characterized by Raman 

spectroscopy and SEM measurements.  Using both a D/G ratio and G’/D ratio from the 

Raman shift of a sample as a more accurate method for determining CNT quality was 

proposed.  However, the G’/D ratio seemed to be particularly susceptible to degradation 

when the CNT sample under test was vertically aligned.  This was due to the defects 

present at the exposed tips of the CNTs where the metal catalyst forms a plug or cap on 

the CNT.  Analysis also showed that Raman shift cannot be used alone to determine CNT 

sample quality.  The sample with the best Raman shift turned out to be a poor CNT 

sample due to sparse growth, dispersive CNT diameters, and the formation of excessive 

amorphous carbon.  All qualities easily identified with SEM micrographs.  The disparity 

in quality assessment was ascribed to the individual CNTs being relatively defect free 

which would affect the Raman shift, but the sample as a whole was still poor per the 

reasons already mentioned.  The MPE-CVD grown CNT samples were on the opposite 

end of the spectrum.  The Raman shift indicated high defect densities, but SEM 

micrographs showed dense CNT growth with uniform diameters and no amorphous 

carbon.  The MPE-CVD process was also shown to have more control over the length of 

the CNTs. 

 Field emission testing was performed on both MPE-CVD and T-CVD samples and 

it was shown that good Raman shift ratios does not correlate to good field emission 

performance, unless the physical qualities observed through SEM images are also good.  
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The T-CVD grown Ti25/Fe10 CNT sample had the best overall qualities, good Raman 

shift and observed physical qualities, and also had the best field emission performance.  

In all cases the MPE-CVD samples performed much worse than the T-CVD samples.  

This is due to a combination of factors, which include the CNT length and areal density.  

The MPE-CVD CNTs were much more densely packed and were only 1-2 µm in length.  

Both of these traits increase electrostatic screening effects which in turn reduce field 

emission performance of CNT carpets.  The T-CVD samples tested were both less 

densely packed and significantly longer, ~20+ µm.  The MPE-CVD samples were 

determined to be better candidates for incorporation into gated field emission devices 

where the traits that reduced performance for the diode configured carpet samples will 

facilitate a triode configuration which will significantly increase overall device 

performance.  The current T-CVD process requires more control over the CNT length 

before integration into gated devices. 

 A sputtered carbon buffer layer was deposited between the barrier and catalyst layer 

as a potential method to isolate the catalyst from the barrier layer to make it possible to 

change the barrier without having to adjust or change the growth recipe.  The results were 

mixed.  The carbon layer slightly improved the quality of the CNTs on a Cr barrier, but 

slightly decreased the quality of CNTs on the Ti barrier.  The effects of the carbon buffer 

on field emission were even more impressive.  The Cr/C/Fe samples saw a large 

performance increase over the Cr/Fe samples.  The carbon buffer degraded the field 

emission performance of the Ti barrier samples.  The combined field emission and 

physical analysis showed that reliable CNT synthesis processes had been developed for 
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both MPE-CVD and T-CVD.  Albeit the MPE-CVD sample requires a Ti/Ni 

barrier/catalyst combination and the T-CVD process worked best with a Ti/Fe 

combination. 

 A simple gated array device and fabrication process was proposed.  Then finite 

element analysis was used to optimize the device dimensions to maximize the electric 

field strength at the tips of vertically aligned CNTs.  Both the simple gated array device 

and the optimized device were fabricated.  A conventional photolithography process was 

used to fabricate larger, >1 µm, element array devices and an inexpensive novel 

nanosphere lithography process was used to fabricate sub-micron element array devices.  

All fabrication steps were demonstrated, but fully functional gated devices were not 

fabricated.  Devices with the gate metal shorted to the substrate were tested for field 

emission and compared with a carpet sample.  The results confirmed the effects of 

electrostatic screening and showed that field emission performance could be improved by 

limiting these screening effects.   

7.1.  Contributions 

 This research effort has resulted in a number of contributions to the field of CNT 

synthesis, characterization, and field emission.  These unique contributions are 

summarized below. 

  The work documented in Chapter III showed that material stresses have a 

significant effect on CNT synthesis.  Two physical vapor deposition methods, sputtering 

and evaporation, were used for both the barrier and catalyst layers.  Each deposition 

method was analyzed and differences in compressive and tensile stresses identified as the 
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most likely cause of the differences in CNT growth.  Sputtering was determined to have 

more control over the material stresses and resulted in successful CNT growth via MPE-

CVD.  This research effort also further defined the relationship between catalyst 

thickness and CNT diameter by showing the catalyst thickness has less effect than the 

granulation process in determining the resulting CNT diameters.  This particular effort 

also confirmed Ostwald ripening effects which had recently been documented [34]. 

 Chapter IV covered efforts to develop T-CVD synthesis and characterize and test 

the CNT carpets produced.  It was shown that differences in barrier layer thickness could 

alter the growth process as significantly as changing the deposition method.  The G’ peak 

was used as a method for determining MWCNT quality with Raman spectroscopy.  It 

was shown that when the CNT sidewalls are exposed to the excitation laser the G’ peak 

can be used in the ratio of G’ peak intensity to D peak intensity, but when the CNTs are 

vertically aligned the G’ peak cannot be used to determine CNT quality.  The ratio of 

D/G peak intensities is still effective at showing CNT quality.  A significant discovery 

during this effort was the large increase in field emission performance for some 

barrier/catalyst combinations when a sputtered carbon buffer layer was deposited 

between the barrier and catalyst.  The Cr barriers showed slight improvements in CNT 

quality with the addition of the carbon buffer, but field emission current density increased 

by as much as 100x.  Relationship between CNT quality and field emission performance 

was documented.  It was shown CNT quality alone cannot be used to predict good field 

emission performance.  The areal density and presence of amorphous carbon also must be 



 

133 

considered.  The combination of Raman shift data with SEM images was shown to be 

effective at predicting which CNT carpets would have good field emission performance. 

 Chapters V and VI were the results of a coordinated effort to design, fabricate, and 

test gated CNT field emission arrays.  Finite element analysis was used to develop a 

design optimization process.  The modeling and simulation results showed that for gated 

arrays screening effects are mitigated from element to element, but are dominant within 

an element.  The results led to optimizations in element size, shape, and CNT length.  

Element shape was particularly interesting because the 3D simulations indicated square 

shaped array elements are more effective for maximizing electric field strength than 

round elements.  A novel fabrication process was developed using nanosphere 

lithography for the optimized design.  The process was shown to be effective for arrays 

with elements of 500 nm and 250 nm with the potential elements small enough to limit 

CNT growth to one per element.  Testing of prototype arrays was performed and the 

results used to confirm simulation results that gated structures will reduce screening 

effects between elements.  As with any research effort, every new piece of information 

results in three new questions.  Where future research should be focused is covered in the 

next section. 

7.2.  Future Research 

 For the immediate future, all research efforts should be focused on completing the 

fabrication and testing of fully functioning gated array devices.  Then process 

improvements towards vertically aligned CNTs within the devices can be accomplished 

in parallel with other field emission related research.  With working gated field emission 
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devices, sensor suites could be developed to measure the energy bandwidth of the emitted 

electrons and phosphor screens could be used to gage or measure the electron plume 

created during field emission. 

 The MPE-CVD growth process should be further refined to successfully 

incorporate DC stage biasing for vertically aligned CNT growth.  Once vertically aligned 

CNTs can be reliably grown, comparison studies could be performed to determine if 

alignment improves field emission performance over non-aligned CNTs.   

 The T-CVD process should be refined to allow more control over the length and 

areal density of the CNTs to facilitate integration into gated devices.  Future research 

could also focus on the interactions of the carbon buffer layer with the catalyst and 

barrier layers to determine the mechanism or process that drives the field emission 

improvements seen with the chrome barrier samples but not the titanium barrier samples. 

 There is a lot of room for improvement in methods of characterizing the quality of 

multi-walled carbon nanotubes, both with in this research effort and the body of literature 

as a whole.  A more refined and focused Raman spectroscopy study could be conducted 

to determine better relationships between the peak intensity ratios and the quality of the 

MWCNTs.  Other aspects of Raman spectroscopy not considered in this research and 

currently not mentioned in the literature when Raman spectroscopy is applied to 

MWCNTs is peak width and peak shift.  Both of which can be easily measured and may 

provide valuable insights into the quality of MWCNTs.  The use of different wavelengths 

of excitation laser should also be considered in any further efforts of characterization via 

Raman spectroscopy. 
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 The results reported in this effort indicate stress of the catalyst layer and possibly 

the barrier layer have significant effects on CNT growth.  Samples used for this research 

had both barrier layer and catalyst layer sputtered or evaporated.  Further study on these 

stress effects would provide valuable information about the catalyst granulation and CNT 

growth.  Which layers have the most effect could be determined by swapping the 

deposition methods of the barrier and catalyst layers.  Thus, evaporate the catalyst on a 

sputtered barrier and vice versa to determine if it is only the catalyst intrinsic stress that 

affects growth or if the barrier stresses also play a part.  The sputtering process could also 

be adjusted to determine what effects varying the pressure, which varies the intrinsic 

stress, would have on CNT growth.  Measuring the intrinsic stress as the thickness of the 

barrier layer is increased could also be used to determine growth recipes compatible with 

much thicker barrier layers. 

 The finite element analysis performed in this effort focused on the device design 

and only considered the electric field strength and physical dimensions of the CNTs.  A 

more robust model could be developed to include actual electrical and mechanical 

properties of MWCNTs.  The model would become more complicated but also provide 

much more insight if it incorporated field emission and the resulting current flow.  

Modeling and simulation of the proposed complexity would require a scaled approach.  

First defining the physical properties and validating a model of a single CNT; then 

simulating field emission from a single CNT and incrementally building up to a complete 

array. 
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 All of these research areas maintain a focus on field emission, but with reliable 

methods of growing CNTs available the areas of potential research open up to many other 

potential CNT applications. 
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